PRODUCTION THEORY WITH CONVEX LABOR FRICTION:
FOUNDATION OF AN OPTIMAL NON-MARKET-CLEARING ECONOMY

KOJI YOKOTA

AsstracT. This paper provides a general framework for the supply widen a firm employing multiple workers faces
convex search friction. It also provides analytical schéonenon-steady states. Convex search friction makes the pat
outside of unbounded steady states possess greater sigodithan mere transition, since any level of output can be
supported as a steady state equilibrium depending on tte aft@xpectation. The marginal profit value of labor is
always strictly positive, which results in persistent eeccdemand in the labor market as well as excess supply in the
goods market. However, the fact that convex search friatiakes immediate adjustment of employment suboptimal
induces further hiring to depend on coordination of expema It raises non-market-clearing equilibrium in ternfs o
long-run without price- nor wage-rigidity in competitiveneronments, since flexible prices eliminate only tempgrar

disequilibrium but not coordination failure.

1. INTRODUCTION

The present paper studies optimal employment policy of adiperating in a frictional labor market in which
friction is representable by a convex vacancy cost functod studies its implication on employment distribution
and market equilibrium. In generalizing a matching modeifrone-to-one to one-to-many, it is natural, or even
necessary, to assume a convex vacancy cost function —adnmehich literally relates number of job vacancy
posting to the cost. The existence of friction make it inevié to use internal resources to hire workers so that it
causes congestion over those resources. Search frictieneintly arises from heterogeneity in undocumentable
properties of workers or firms. Any friction attributable documentable properties can be part of friction, but
it is easily eliminated with information technology to a tigiple level. As such, selection of workers requires
tacit knowing by insiders, and therefore, if a firm intendsrtorease number of hiring, the accompanying cost
should exhibit more than linear increase as any kinds ofstisjent cost do (Uzawa (1969), Yashiv (2000, 2006)).
Yashiv (2000) shows that empirical hiring cost function ighty convex in terms of weighted average of posted
vacancy and actual hiring. Moreover, convexity in the vagyarost function is supported from the fact that it
is the only class robust against small perturbations ontfomal form, the derivative of which is monotone and
which does not diverge in equilibrium. Requirement of rdbass would be natural, because there is no logically
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deterministica priori reason that the vacancy cost function must have a partitriational form. For an analysis
to be applicable to actual economies, it should be basedmrstassumptions.

It will be shown that the marginal wage cost value determibgdbargaining isalwaysstrictly smaller than
the marginal production value of labor as far as employmebeiow the unbounded steady state. On the other
hand, the optimal employment policy under the convex vagaost function does not allow the path to jump
to the unbounded steady state. This is in contrast to tharlimecancy cost case of Smith (1999). Any firm is
willing to accommodate all the demand directed to it at anyrmant. However, investment decision on hiring
cost depends on the expected demand in the next moment wghiontingent on the action of other firms. For an
economy to converge to the unbounded steady state, agestsinane dynamically persistent common knowledge
that the economy ultimately reaches to that state. Oncetislgenome to believe that demand is already satiated,
strategy to make additional employment becomes suboptiama thus demand will not actually grow. This
brings the same implication as non-market-clearing (NMg@praach by Barro and Grossman (1976) on rational
basis with flexible prices. Flexible prices will eliminatentporary disequilibrium but not the state of long-run
disequilibrium that arises from the degree of coordinatibhe model presented in this paper is a generalization
of the Mortensen-Pissarides model which assumes that ptiodus undertaken by a pair of a worker and a job.
The Mortensen-Pissarides model can be interpreted thsdiinaes that the “firm” employing multiple workers is
decomposable to independent units of jobs. Its assumpfiocorestant vacancy cost is literally hypothesizing a
linear vacancy cost function. It assumes that the size ofl@yment in the economy is determined by the entry
condition that the value of vacancy equals zero, togethtr thie assumption that each production pair always
successfullyearns constant income. However, it is not guaranteed tlealetrel of employment this condition
requires is not so huge that it exceeds the existing populaft the unbounded steady state, we should observe
that potential entrepreneurs cease job posting simplyuseciabor market tightness makes the waiting time for
arrival of workers too long compared to vacancy cost. Howemgch behavior can be observed, if any, only in
the acme of economic boom. The existence of free publicrimédiaries and the fact that vacancy cost should
decline as market tightness increases enforce the viewttbaequired employment is too high. The decrease of
vacancy cost is due to the decrease of applicants that ayartfirm receives requiring less cost for interview and
selection activities. Also, linear hiring cost implicithssumes that hiring activities do not consume any internal
resources. Namely, the selection process must be trivididatdt simply does not exist or it is outsourced. In the
former case, search friction due to heterogeneity of ageilitaot exist. The latter case implies that all properties
related to worker selection must be describable to dele¢gatselection.

Section 2 summarizes the structure of the model. Sectiaumd3est how the value of employment is determined.
Section 4 studies how the outcome of wage bargaining is ltoaid in the form of wages. Non-stationary
value functions are solved using the integral equationsti®e5 studies the firm’s optimal employment behavior.

Section 7 analyzes the behavior on the demand constraimttlibeonstraint is stationary. Section 8 delivers some
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implication on interest rates, which might resolve the @dlion paradox. Section 9 provides some concluding

remarks.

2. TueE MoDEL

2.1. Firm. A competitive firm under the presence of search friction eltbor market is considered. The number
of firms is continuous with fixed measure ohédamely, one particular firm has continuously small measure.
Therefore, the change in the supply of the firm canrffgch aggregate supply, resulting not only in unchanged
prices but also in unchanged aggregate income. There argdeas in the economy: output goods and various
types of labor. Output goods is taken to be numeraire and lalheeterogeneous with unknown properties so that
optimal search behavior of a firm is not trivial. A firm uses tiplé workers of potentially dferent types. Types of
workers can be categorized into two classes, declarabds typd non-declarable ones. The former is the properties
that can be prescribed as hiring requirements, such asgsissef driver’s license and academic background. The
latter is the attributes that cannot be documented. Thexgtoey are only revealed after having an interview with
workers. Personality or suitability to particular corp@raulture falls in this category. The notion of quality of
match is also covered by this concept as far as it is revealetediately. Non-declarable types are assumed to be
matching-specific. Worker types are expressed by a conbimat declarable and non-declarable types, therefore
let bundle {, j) denote a worker type with declarable tyipe {1,..., L} and non-declarable typee {1,..., M;}.
Different types are clearly distinguished from each other. Afsriire assumed to be unable to choose their types
to abstract theféect of education and training. Same type of workers are hemegus. Production function

of a firm is given byf(l) wherel = (I1,...,1.) andl; = (li1,...,lim,) are vectors of employment such that

is employment of i( j)-type worker,0f/ol;; > 0 andf is concave. We also assume Inada condition around the
origin: 9f/dlij; — +oo aslijj — 0.

Since labor market is frictional, a firm cannot adjust empiewnt stock directly. It can only adjust inflow to and
outflow from the stock. For the inflow, the firm decides how mimtarnal resources to spend on recruiting workers
in the labor market to adjust employment. After the choictheflevel of recruiting activitiesn = (ny, ..., m_) for
each declarable type, it would observe a variety of appl&trarrive stochasticall/A matching session proceeds

in a way that firms post job advertisement first and workerdyeiopa preferred job. Such a matching mechanism

11t should be emphasized that thisrist assuming away free-entry to get the results obtained inpdr. The reason that this condition
is required is that, 1) a vacancy cost function with no fixest,cg) variable measure of firms and 3) the production econsimply cannot
coexist. Once we allow variable measure of firms, infinite banof firms employing no workers is created, leading to zeoapction (not
indeterminate, see arguments below). To describe praguetionomy, either 1) or 2) must be discarded.

The reason that the vacancy cost functicsuch that(0) = 0 is incompatible with variable measure of firms bounded b¥eny condition
J(0,y) = O is as follows (please refer to later pages for definitiofisy. = 0, thenJ(0,y) = 0 holds with no firm entry. On the other hand, if
y > 0, firm entry must continue unti)(0,y) = O is restored witly = 0 (adjustment through alone cannot bring = 0 since, for any high
value off, the entrant firm can set arbitrarily smad). Thus, no production equilibrium can be supported witifougtd costs.

The other strategy to build a model for production economyldide to throw away 1), namely to assume that there exist such that
x(0) = k. Itimplies that the no-entry condition holds wigh> 0. SincedJ(t)/dl;j () > 0, it makes new entrants give up, whereas existing firms
are willing to operate. Hereby, simply assumiti@0) > O will not sufice, because it will make all firms shut down by optimality citiod
(5.6) so far as entrants do not want to enter. Since the iatic of such an alternative model does not significantijedifrom the present
model, the simpler model is adopted. However, the emergehttee distribution of firm size is abstracted by doing so, ahhivould have
arisen in the alternative model by historical movemen.of

2By equation (2.1)m is directly related to the increase of labor force. It is labeas “level of recruiting activities” instead of “numbefjob
vacancies” to abstract the strategic behavior to annourare job posts than actually wanted.
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would be a natural equilibrium when most of characterigticirms relevant to matching are declarable whereas
those of workers are non-declarable. It results in the sam®ome as random matching, so that the probability
that a firm receives applications per job posting is a deargdsnction of theVU ratio in the labor market of
declarable typé, 6. It is denoted byy(6) : R, — R.,.2 On the other hand, non-declarable type is matching
specific and non-declarable typemerges with probabilitg;; € (0, 1) among declarable typavhere}’; gi; = 1.
Therefore, if a firm exerts recruitingfert m on declarable typein the labor market, it will receivei; y(6;) m
applications from typei( j) worker.

On the other hand, there are two factors whiffee outflow from the employment stock. One is an uncontrol-
lable leave of worker8.This natural separation of type {) worker at timet is a Poisson arrival with parameter
oij(t) > 0.5 The other factor is intentional dismiss by the firm. Dismissfatype (, j) worker is denoted by
Xij € [0, X] whereX € (0,) is a suficiently large number and can be interpreted as a physicaidary of
adjustment speed of employment downward. Note that the fanmspecify the worker type to dismiss since the
non-declarable property of a worker is revealed during thpleyment period.

Now, the firm can control the time derivative of typejj employment usingn andx;j so that
(2.2) i = gw@m—oqli—x;  Vi=L..,LVj=1. . M.

Notationg;; (t) := g;;(t) ¢(6i(t)) is sometimes used for simplicity.

Job posting is assumed to be costly. Smith (1999) assumatar lvacancy cost function, so that a firm
employs all necessary workers to reach to the steady stdteifirst period, and then it maintains the steady
state forever. With this carefully arranged setup, adjestnprocess to the steady state is virtually abstracted but
at the same time it omits robustness against small pertartsabn functional form. To restore robustness, we
are induced to assume a convex vacancy cost function faip@iminimalist principle, which has the property
that the derivative is monotone and also the implied equilib outcome does not diverge. It would be a natural
assumption from the viewpoint that a vacancy cost functimuid be regarded as an adjustment cost function. In
practical applications, the cost should be interpreted¢hide the cost for orientation, training and deterioratio
of productivity that arises from on-the-job training anéxperience of new workers, as well as the cost necessary
for actual recruiting. Modifying the functional form in #hiway definitely complicates the analysis compared
to a linear case, but it should be emphasized that such a nboidels significantlydifferent macroeconomic
implications. We denote the vacancy cost function of dedkrtype by «(m;,t) : R, x R, —» R, wherex; > 0,
dki/omy > 0, 9%/Om? > 0, xi(0,1) = d«i/dm(0) = 0, and the second argument will be sometimes omitted for

simple notation, i.ex;() := (-, t). The time-dependency ef allows it to depend o#;. Another cost for a firm is

SThis is a special case of Yokota (2004) so that the qualitgstold of a firm to decline an applicant is set to zero to cenftire current
problem setting. In this paper, rejection is detached tahivice ofx;;.

4Since it turns out later that the value of employment stadumways greater than the value of unemployment statussiizisk is not only
external for firms but also for workers.

Sit may be more natural to assume that the quality of a matctiugitly turns out on the job as in Jovanovic (1979). Howeves,alistract
internal working of separation.
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wage payment to each type of workers. Wage payment is detediy bargaining between a firm and workers to
share their rent that arises from historical advantagdsathalready-formed coalition possesses. Wage rate will
be shown to be a function of employment. Therefore, the firoidi#s the amount of employment knowing the
wage schedule it faces. We denote the wage function of fypety wi;(l).

On the demand side, consumers demand outputs based on atifammabout current assets, current income
andthe state of expectation on series of future incavhéch is influenced by the degree of coordination among
agents. The expectation on intertemporal income holds @ot#ind ¢ equilibrium paths. In the present model,
temporary equilibrium is brought by adjustment in the iagtrrate. Temporary supply is fixed at any given
instance, therefore interest rate adjusts temporary déntameet it &ecting intertemporal relative prices. The
model also allows for analysis when disturbances are addi tadjustment in interest rates in the goods market.
In such a case, temporary disequilibrium arises in additidiong-run disequilibrium. Another such instance is
the case of perishable goods since it physically prohibtesrtemporal consumption smoothing by consumers. Let

us denote by(t) the “demand density” defined by

1
(2.2) () = f(l(t),n)+(D(Ir,i/,t)—fO f(l(t),n)dn)
and
(2.3) y(t) = D(r.9.1)

where we explicitly denote the production function of firmttwindexn by f(I, n) assuming integrability im,
andD(r, §,t) is the total demand for outputs as of timahich is dfected by interest ratgr) (t < 7 < o) and
income streany(7) (t < 7 < ). It also includes “queue” of demand which has not met by ey supply.
Equation (2.3) and the second term of equation (2.2) imposedgeneity among firms in terms of their future
prospectives, since they imply that additional demandgqually distributed among them. Modification of these
terms will introduce heterogeneity in their, say, markgtpower and others. Thug,should be understood as
rational expectation among market participants on prdsmecof each firm. Since any firms cannot directly
affectr, y is given for any particular firm under rational expectatiadormalizing the price of output to one, the

instantaneous profit of the firmis given by

L
7= minfy, f () =w(l) 1= > i (m).
i=1

6As Arrow (1959) argued that the economy will show evidendem@nopoly and monopsony in any state of disequilibriumeipg strategy
must be examined carefully here. Firms can potentially bsg profits to lower nominal prices and expand their marketrs permanently.
However, such a move will be retaliated by other firms, ré@sylin failure of the original intention of market share end®n. If demand is
elastic in interest rate, it increases temporary markedyrtion and lowers interest rate, but reduces future dem&undh a strategy costs
more than proportionate hiring costs but shifts demand fiitore to today. We assume away such a strategic move in geitiags and the
firm simply takes the bargaining outcome of real wages. Wieenahd has zero elasticity, there is no incentive to martpylaces.
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When miny, f(1)} =y, as far as there is no reason for labor hoarding, incredgimgnakef (1) > y is obviously
suboptimal. Since the above formulation introducesftiedéntiability inz that makes succeeding analysiffidi
cult. In stead of handling the above formulation directlg, &re going to analyze an “approximate” problem that
the firm maximizes profit = f (I) —w(l) - | = X5,  (m) under the constrairft(l) < y. Itignores cases in which

a firm hoards labor facintemporarydemand recession, however their long-run outcome shoudlibe similar.

If it is expected that labor hoarding never occurs in futireth outcomes exactly coincideAgain, for simple

notation, the following notation is sometimes useg!) := wi; (1) I;; for any (, j).

2.2. Workers and consumers. Workers are in either state, employed or unemployed. An yh&yed worker

of type (, -) at timet receives instantaneous unemployment bebgtit. An employed worker of typei(j) will

be paid instantaneous wagg (t). The value of typei(-) unemployment at timeé is denoted byJ;(t) and the
value of type-{, j) employment at timéis denote byE;j(t). Matching sessions between job-seekers and vacancies
open at any moment. Matching probability of an unemployedkenis given byy;(t). It is in general influenced

by 6;(t) but we suppress its explicit notation. Matching sessioestimme-consuming and the length is random.
Agents cannot attend other matching sessions simultalyaohie he is engaged in a particular sessiowhen

an unemployed worker of declarable tyige successfully matched to find out his undeclarable tygehs shifts

to the employment status of typg f). Namely, on success, he receives capital gajt) — Ui(t). Assuming

workers are risk neutral, the Bellman equation for unemplent status is
(2.4) r(t) Vi) = bi () + (0 Ej [Eij(®) - Ui@)] + Ui, vi

wherer is interest rate anH, [Eij(t) - Ui(t)] = Z?ﬁl ij (1) E;j(t) — Ui(t). Similarly, the employment value of type

@i, ) is given by
(2.5) (1) By (1) = wi(0) - 5 (O [Ey () - Bi®)] + Ej®, Vil |

wheredij(t) = o3 (t) + xij (t)/1;;(t) is separation probability for a worker.

3. BARGAINING OVER COALITIONAL RENT

When there exists friction in the labor market, pseudo-agises in an existing firm-workers group. The rent
comes from the fact that any firms or workers who have not fdrengroup yet must enter a costly process of
search. It makes a room for bargaining over the rent betwd@maand workers who have already formed a
group. Therefore, production should be regarded as omaditly undertaken by the going concern and present

employees, and distribution of pa§®is made through bargaining taking into account futurewahef players.

7If unintended inventory investment is included in the déifami of y as in that of national accounts, this problem will not arise.
8f matching sessions open continuously and end instantehecall agents on one side of the labor market will be matdnemediately
almost surely.
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Coalition of a firm and each type of workers with meadyraill get intertemporal payf F which is the value of

00 L £
F(I) = f [f(l*(f))—zki(m*(f» e kg
i=1

wherel” andm’ areon the optimal path for the firin the concomitant problem defined in section 5. In this
coalition, bargaining is made among continuously many gaigy It will be found that the imputation to give

workers just the half of their marginal gain, i.e.

1. 10F
Eij=-Ui+zo
1= gan

is supported as a bargaining solution by Shapley value aditi@aally by nucleolus iff shows concavity. For
the moment, to clarify conditions characterizing the solutargument proceeds with a general setup that wage
bargaining should satisfy.

LetQ be a set of all players. Players are partitioned by gr&@jgs= 0,1,..., M; M € N) such thanN:lSi =Q
and mi’ilsi = (. Each group consists &§; € N U {co} players. Thej-th player in grougs; is denoted bys(j)
(j=1,...,N). s(j) has measurd|; for all j and there exists a fixed numldee R, such thai\; dl; = |; for all i.

Characteristic function is denoted lay 2 — R. We require following assumptions:

(1) (Essential game) The game is essential M) > > s.q V({9}).

(2) (Anonymity) Players in the same group are anonymous,foeany S and j, V(S U {s(j)}) - Vv(S) is
common.

(3) (Indispensability) Missing groups make coalition uoghuctive, i.eV(S) = ¥ jes V(1S (j)}) if there exists
isuchthaSnNS; =0.

(4) (Existence of a non-degenerate play®y)s a special group which consists of only one playerNg= 1.

Refer to this game with symbé)lN(Q, v) whereN := (No,...,Nm). Next, define a more specific game within
the class oD,l\‘(Q,v) which possesses essential concavity as an additionahasisun. It requires concavity only
for coalitions with more than two players so that essemyialf the game will not be lost® Namely, we put the

following additional property:

(5) (Essential concavity) The gamedssentially concaye.e. its characteristic functiomhas the property

that, if S, T C Q satisfiedd c S c T, then
V(SU{s}) —v(S) =T U {s}) —w(T)

foranyse Q\T.

Swe require a singleton solution to proceed with the modetsdtides (1985) assumed that, in the case that productiomdertaken by a
pair of a firm and a worker, they divide the rent by a Nash baiggisolution. There is an option to generalize it adoptinglayer Nash
equilibrium. However, since the present model containgi@@nt asymmetry between a firm and workers, it seems mdrgaido take
coalitional rationality into account.

104 globally concave game always violates zero-additivityst formation of non-trivial coalitions cannot be expected



PRODUCTION THEORY WITH CONVEX LABOR FRICTION 8

Refer to this game with symbalZ (Q, v). Finally, define an even more specific ga@%((), V) which is directly
related to our problem. Players are grouped by categoriedwalne classified in two dimensions so that any player
belongstd5;; fori =0,...,Landj=1,..., M, WhereUiLzouz.\’jl Sij = QandS;;nSi; = 0forany(, j) = (', ).

Characteristic function is defined by

Yies Ui if there exists such thaS N S;; = 0
3.1) V(S) =
F(i1,....Tm,) otherwise
whereU; > 0 for all i, fjj := ||Sn §;j|| andF is increasing and concavé.Obviously, this is a special case of

02(Q, V) with S = Syit m+j-1- However, we will not utilize the above additional specifioas to characterize
solution concepts. They are only used to relate the reshittsreed in this section to the rest of the paper.

Our objective is to obtain a bargaining solution of the abgames wheMN — oo’ wherec’ ;= (0, ..., ) €
(R U {oo})M keepingl; fixed for alli > 0. Note that, by doing so, the firmy(1) keeps discrete influence on
coalitional payd. The property that workers get only partial contributiopeleds on the assumption that players
in Sg does not degenerate, rather than the particular value @sisumiy = 1. Also, note that concavity ofand
F is suficient to holdonly from belowat Q andl, respectively, i.e. the concavity need not hold for sugerstQ
or anyT > | with ﬂj > l;; for somei, j. This fact will be used in section 6. Denote the density imafiah to player

shy «(s), i.e. imputation of playes with measurell becomes(s) dl.

Theorem 1. In 9%, (Q, V), the imputation to allocate

(3.2) (s () dh = u(Is()) + 5 [W@) - v\ (sG]

to any workers of typé, j) is supported by Shapley value.

Proof. Choose a playes;(j) for somer"and;. Consider any coalitio such thatsy(j) € S containingn; players
from groupS; such that; > 0 andn; > 1. The contribution of;(j) to coalitionS is v({s(j)}) if there exists
such thatS N S; = 0 from the indispensability assumption. In other casesNif® — V(S \ {s())}). The Shapley’s
weighty(S) for the contribution ofs () to coalitionS is given by

(Mo = DS N = 3 Mo m)!
(Mo N

S vy

i=0

¥(S)

Without loss of generality, let us assume 1 below for concise notations. From the anonymity assumptay

S with same o, ..., Ny) has the sameg(S). The number of cases to form coaliti@containings(j) = s1())

~11Th~e assumption of global concavity kis actually asking too much than necessary. It ticient if F satisfiesF(T) <F(l)-aF()/al- (I -
1), ¥I < | for the current level of employmerht
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(g ey g R

with same (g, . . ., Ny) is given by

Then, Shapley value is given by

Vis(O)+ Y. TS)mS)-v(S\ (s:(M})]

{S:TIMni>1}

(3.3) (s1()dh = [ PERIC)

(s:TTn=0}

where
No Ni—=1\ (N,

o= (1) (i (G- B

Proposition 20 in Appendix A show that déieientI’(S) is a probability mass function such tHgS) = Y'(ng, ny—

1,ny,...,nm; No,N: — 1, Np, ..., Nym) where distributiory is defined in Appendix A. Note that the distribution
possesses point symmetyny, ..., Nw;d1,...,4m) = (1 — N, ..., 4m — Nw; {1, - - -, dm)- Using these two facts,
PRICEEIRIC)
{S:np=0} {S:inp=1}
Now, in either case afip = 0,1, Y. n-0) [(S) —» 0 asNy — o foralli = 1,..., M. Yg v -0 T(S) can be

written as

Z r(s) [Tiin=0n=1) (’é‘) Z [Tinz1n=2) (':,')

M M N
M N SMONi-1
(s n=0) LN (s

1 Z l—l{i:nizl,nlzZ} (’T\Wlii)
SN (2N

where the right hand side converges to zerblas> «. Therefore,

1
dor®)=x Y e = > 1)~ ) I(s)~ 3.

{s:11My ni=0} {S:no=0} {Sino=1} {s:TM ni>1}

It shows the cogicient ofv({s(j)}) dl; in (3.3) converges to/2 asN — oo’. From Proposition 21 in Appendix A,

we obtain
(s (i dh = u((s (D) + 5 [W@) - V(@ (sG]

foralli, j. O

The above derivation critically depends on the indispeifisalind the existence assumption of a non-degenerate
player, which enable for the firm to keep discrete influencpaydts whereas that of individual workers becomes
negligible asN — o’. On the other hand, characterizing bargaining solutionuatelus requires an additional
assumption that the game should be essentially concaveneAdltset, the following lemma shows that core is
non-empty if and only if the production process is more puiihe for the last marginal worker than unemploy-

ment in terms of value.
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Lemma 2. O,(v, Q) has non-empty core if it is zero-additive. So dB&gv, Q) if and only if
(3.4) V(@) -v(@\ {s()}) = (ts(i))

foralli, j. In D:’,\“(v, Q), the condition(3.4)is replaced byF/dlij > U;.

Proof. We start from the necessary conditionf. Consider imputation such that asg Q \ Sq is allocated by
1(s) = v({s}) and playersy(1) is allocated by(so(1)) = V(Q) — Ysca\s, V(). This is feasible by essentiality of the
game. Obviously, ang such thatsy(1) ¢ S satisfies coalitional rationality SinCBg.s t(S) = V(S) = X ss V({S}).
So does any coalitio such thatsy(1) € S since its imputation yield§ ¢ s «(S) = V(Q) — X5 V(S) = V(S) by
zero-additivity. which implies that this imputation is ted in core. If (3.4) holds fad?, zero-additivity holds
from the essential concavity, which shows that (3.4) is @asary condition fob?. The case foD? is direct from
this sinceD? is a special case @?.

To show (3.4) is a dficient condition forD?, suppose/(Q) — V(Q \ {s(j)}) < v({s(j)}) for somei, j. The
individual rationality ofs(j) requirea(s(j)) > v({s(j)}). Also, coalition of the rest requireEseg\‘S(j)}L(s) >
V(Q \ {s(j)}), which implieSL(s(j)) < Vv(Q) - V(Q \ {s(j)}) < v({s(j)}). These two equations are not satisfied
at the same time, thus core is empty. It shows zero-adgiiwialso sificient. The result foD? is derived from

this. O

Following the context of our model in which workers and thenfare all rational in participating in production,
the bargaining solution must be in core. Otherwise, at leastplayer will leave the coalition, which implies
that the current coalition is not actually on the optimalhpathe above lemma means that the problem can be

restricted to the case 6F/dl;; > U; on the optimal path.

Lemma 3. If game(Q, V) is essentially concave in which players are partitioned mugs such tha€ = Ui'\ﬂl Si

and ﬂi'\ﬂl Si = 0, then for any ST C Q such that Sc T, the following inequality holds.
n
V(T) = V(T \S) > Y IS N Sill[MT) = (T \{s()})]
i=1
Proof. See Appendix B. O

This lemma is analogous to the property of an ordinary com@action: f (X1 + AXa, ..., Xn+ AXp) < fx, AXqg +

.-+ + fy, A%y in which each axis corresponds|i® N Sj|l. Itis required to derive nucleolus of the game.
Theorem 4. In 9% (,v) for any N, the imputatior(3.2)is supported by nucleolus.

Proof. The proof starts from the following lemma.

127his result coincides with Stole and Zwiebel (1996) by edlirg its result to a case of infinite number of agents.
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Lemma 5. Consider a coalitional game? (2, v) for givenN in which () - V(Q \ {s(j)}) > v({s(j)}) holds for

any i j. Then, in any max-reduced gamezf (2, v), the least cord'(s,) is characterized by excess

(35) v =~ [V(@) ~ (@0 \ 15(D) - V(15|

whereQ, is a set of players in the n-th reduced game ardarg min v () — V(Qn \ {S;(j)}) - v({s(j)}) in which

j can be arbitrary by anonymity.

Proof of Lemma 51n then-th reduced game, characteristic function is given by

VIQ\ QU S) - sqiq, U9 if (1) €S
(3.6) v(S) =

YesV(Is)) if (1) ¢ S
for anyS C Q.
Consider imputation in the-core for given excess,. Individual rationality with excess requires(s(j)) to

be

3.7) usi(i) = v(s(j)) — &n

foralli, j. Onthe other hand, coalitional rationality with excessf the complement of the above, i@, \{s(j)},

requiresy, N

leads to

s()) () = V(Qn \ {s(j)}) — &n. Since total rationality impliegs(j)) = v(Qn) — Zseﬂn\{s(i)} «(9), it

(3:8) ((s(J) < V(@) = V(Qn \ {S()}) + &0

Inthe paydf spacgX € RZiN}whereX := (L(Srl(l)), o t(Su (NM))), consider a domain which satisfies coalitional
rationality of player se§ and its complemert, \ S on simplex manifold\ := {X € RZN : 3o () = V(Qn)}
to satisfy total rationality and denote it (S, £). Without loss of generalityso(1) ¢ S can be assumed by

symmetry. Theng-core is obtained by finding out mife : (Ngeoon B(S, en) # 0}. GenerallyB(S, en) has the form
(3.9) B(S,&n) = {X €EA:V(S)—en< Z 1(s) < V(Qn) —Vv(Q,\ S) + sn}.

seS
From (3.7) and (3.8)3({3(])}, sn) becomes

(3.10) B({s(i)}.&n) = {X € A W(s()) - & < (s (J)) < V(Qn) - V(@0 \ {s())}) + &}

and therefore

M M
(3.11) ﬂ B((s}. &n) = {x €A Z v({s}) - ( Ni)s < Z us) < Z [V(Qn) = V(O \ {S))] + (Z Ni]s}
i=1 seQn seQn i=1

seQp seQp i i
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Since ¢ forms least core, it is chosen to maBeé{s(j)}, sn) non-empty. We are going to show mjte, :
Nsezon B(S, &n) # 0} = min {en : Nseq, BUS} n) # 0}

From Lemma 2¢, < 0. Therefore,
(3.12) V(S) — &n < V(S) — Mep < Z v({s}) — mey
seS
for anym € N. On the other hand, from Lemma 3,

V(Qn) —V(Qn\ S)+en 2 V(Qn) —V(Qn\ S) + Mgy

(3.13)

\%

> [v(@n) = v(@n \ {s (D)D) + men

seS
holds for anym € N. From (3.12) and (3.13), (3.9) and (3.11) imply, for &g 2%, B(S, £) 2 Nsq, B({S}. &n),
from which min, {en : Nsezon B(S, n) # 0} = min,, {en : Neq, B({S}, &n) # 0} is derived.
From (3.10), the condition to degenerdi®(j)) to a point is given by(s(j)) — en = V(Qn) —V(Qn \ {s(j)}) +é&n
from which we obtain

£3(0. 1) = 2 [v(@n) (@0 \ 1)) ~W(Is (D))

If &, becomes smaller that(i, j), «(s(j)) that satisfies (3.10) becomes empty. Thus, forpin : Neq, B({S) &n) #

0} to be obtained, it must be sgt = max &;(i, j), from which the lemma is derived. O

Continuation of proof of Theorem &rom Lemma 5, any workers in groupbtain excess (3.5). Therefore, their

paydf «(si(j)) becomes

«(s:())) = v({si()}) - &n = %v({sf(m) + % [v(@n) - V(@ \ {s(i)})]

The (h + 1)-th reduced game has player Sgt1 = Q, \ ﬁ'j“;l{&(j)}, i.e. all players in groupare removed from
the game. Note that playeg(1) stays in the new game. According to the definition of meduced games, its
characteristic function becomes
N;
V(Qni1) = V(Q0) - D u(s(i) = @) - | «(9)

=1 SEQni1

and, for anyS c Qn,1,

v(S)

max{v(S uQ) - Z ((9): QC O\ le}

s€Q

V(S U(Q\ Q1) — Zscars (s)  if (1) €S

Yeses V(S if (1) ¢ S

which confirms that the assumed characteristic functid o actually correct by induction.
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If 9F/dli; > U; for all ', the game is zero-monotone, and the above lexicographtercsmucleolus (Maschler

et al. (1979)). Since core is non-empty from Lemma 2, theeulak is included in core. O

Theorem 6. In 92, (Q, V), the following imputation is supported by Shapley value andeolus.
1 oF
Eij(n) = > (Ui + GI_.J)
Proof. The result follows from Theorem 1 and Theorem 4. For thedaitiés suficient to show thafF satisfies
essential concavity. From concavity Bf 3 ; (6F(I1)/6Iij)dlij < 2 (6F(I2)/6Ii,—)dlij. Pick up any type«(7)
and sedl;; = 0forany (, j) # (2, J). Then,(&F(Il)/ﬁlgf)dl;; < (GF(IZ)/al;j) dl;; which implies essential concavity
of F,i.e. F(I* + 6l;;) — F(I') < F(1% + 6l;5) — F(1?) wheresl;; denotes the measure of typej}labor. 0

We labeledS, as a set of a firm or an entrepreneur above. However, if theaayiplayer who exerts non-
degenerate influence on productivity or, in other wordssé¢hoho embodies critical knowledge for production as
rent, this player will receive non-marginal part of coalital rent. In this section, we derived bargaining solution
in terms of value function. Its distribution is actually daothrough wage payment. Bargaining outcome in terms

of wages is derived in section 4 and Appendix C.

4. Wage Function

In this section, wage function is derived when there existaess; > 0 for all i such that5; = &; for all j.
This is the case, for example, if there are multiple declarglpes, the natural separation rate is common for all
those types and potential demand constraint is unbindingp,Ahe condition is obviously satisfied when there
exists only one kind of labor in the economy. Since the wagetion in general cases is more complicated than
presented in this section, it is derived in Appendix®C.

By definingz; := Ejj — U; for all (i, j) € T in Bellman equations (2.4) and (2.5), the dimension of thealyics

is reduced by one:

(4.1) z(t) = At) z () — wi(t)

z1(t) r(t) +ai(t) + gini(t) Qioui (1) e Qim; i (1)
wherez (1) = Zz‘(t) A = gil/tli ® r(t) + Gi(t) + gioui(t) giMifli ®

zm, (1) irui(t) Gioui(t) e () + Gi(t) + Gim i ()

wi1(t) — ba(t)

Wia(t) — ba(t) . . . i
andw(t) := _ . Note thatA(t) has eigenvalueqt) + &(t) with multiplicity (M — 1) andr(t) +

wiwm, (1) — b (t)

L3The arguments below follows the traditional derivation @fges for comparison purpose. However, it would be moreg$tifarward to use
“integral version” of Bellman equations as in Appendix C ofisteady state.
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&i(t) + u(t) with multiplicity one It can be confirmed that the following provides the elemegntaatrix d(t, 5):
Di(t, 5) = ek A _ o ¢@+7(@)da [| + (ef;m(Q)dq _ 1) G]
wherel is an identity matrix ané; is an “expectation matrix”

g1 G2 - Owm

g1 G2 - Oiwm

Namely, z(t) = ®@;(t, ) c for any ¢ € R? solves the accompanying homogeneous equation to (4.1)n, The
solution to (4.1) is given by(t) = ®(t, 0)[z — fot D(s,0) L w(3) dg = ebA@da[z _ fot e b A@da (9) d for any
initial value z(0) = zy = (20, . . .,Z.0). Note thatd(t, s)™* = e L A@da_For the no-Ponzi game condition to hold,
the initial value must be set & = fom (s, 0)"* w(s) dsin which integration is bounded. For such an initial value,
2(t) = [T o(s )t ew(g)ds= [~ e I A@da y(9) ds Using the fact thatl[+ (o — 1) G] L = | + (a’l - 1)G for any
scholare, it is found that

@ (s 1) = g K+ [I + (e’f”i - 1) Gi] .

Namely,

(4.2) zj () = fw e K| (wj — by) - E; (wj - by)| ds+ fm e KOa0E, (w — bi)ds
t

t

where expectatiog is taken over all possible undeclarable worker types. 8&gldifferential equation (2.4) for

U; using (4.2),
43) 0O = [ | +u(e & (i@ - b@)e 7| as
Similarly, we obtain the value function of employment fockdype.
(4.4) £ = [ e wy(9ds
o [ as [ el e FON [ (wi) - bi@) - (wy - b)) e
- [ as [ el e Een e (o) - b)) de

The unemployment value is the discounted series of unempaybenefit and capital gain arising from matching.
The employmentvalue is the discounted series of wage pgieceed change of capital gain in new jobs and capital

gain (loss) of dismissal.

Proposition 7. Wage rate at time t is given by

1470 obtain this simple result, common separation rate ambnopdeclarable types of workers is critical.
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b (t)
2

o0+ 22) [ (Enne - 22 ) e Femmae 20 [ (Bxne) - (o) e e

(@) Wi =50 + (Exdin® - 252 + 3 [Ena() - 54 (0)

whereg; is capital gain of marginal value of production, i.8;j := raF/dli; — 9°F/otol;;.

Proof. Theorem 6 implie$?F/tdl; = 2E; — U. Applying (2.4), (2.5), (4.3) and (4.4),

92F (1)
atal;;

6F()

(4.6) (t) (2Wij (t) - b (t)) +26i(t) (1) — () jtm En (Winh — bi) e~ f(r“”&i)df

Taking diterence of (4.6) for anyandj # i, we obtain a Volterra integral equation of the second kintteoning

wih andw;j. ™

0 £, o~ 2 2
(4.7) (Wij(t) —Wih(t)) _(}i(t)ft (Wij(é-‘) —Wih(f)) e Ko ge = %[r(t)(éF(t) ~ 6F(t)) ~ (6 F o F(t))]

6|ij Alin 3t3|ij otolin

On the other hand, taking expectation of (4.6) yields

(4.8)  En (win(t) — bi(t)) - (.(t)—“'—()) ft En (win(€) - (@) & FTdg

OF()  PF@E)
- 5E (050 - G - b))

The above results suggest that it is beneficial to define neablasyY;;(t) (j = 1,2,..., M;) as follows.

Yia(t) G102 O3 - O Wig(t) — bi(t)
Yiz(t) 1/-1 0 -~ O wiz(t) - bi(t)
(4.9) Yat) |=| 1|0 -1 .-~ O wia(t) — bi(t)
Yon, (O 110 0 o -1 ) wm®-bi®

Observe that the above conversion matrix is the same as gle@weictor matrix ofA(t). By this change of

variables, we can “diagonalize” the simultaneous integgalations concerningi;’s, (4.7) and (4.8). Namely,

Yia(t) Kii(t, €) O Yi1(€) hi1

o 1
— . : de = =
ftv ' ' f 2

Yim, (t) o) Kim (,€) J{ Yim, () him
where

Kia(t,£) :—( (0 - "'“’) Jyo—

Kij(t.&) == i) e K (forall j=2,...,M)

I5Note that it is impossible to obtain affirential equation by taking time derivative of this equatiincet resides inside of the integration.
Itis a general consequence of non-stationarity.
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2
hia(t) 1= En (r(t N2 bi(t))
o OF(t) OF(t) °F(t)  0°F(t) .
hij (t) = r(t)( 7l - o, )_(3t6hj - 8t6l1j) (forallj=2,..., M)

and the integration is applied element-wise. Then, thetisoltio this equation is given by

Yia(t) hia(t) Giu(t, é) 9 hi1(¢)
. _1 . 1 f"" . . q
=5 5 ). : S [t
Yim, (1) him, () o Gim (t,8) ) him,($)
where Gjj(t,¢) := - 372, Kf] t,oforj=1,2,..., M;. lterated kernelzn is defined b)K*” =Ks*K=#---%Kand

n

K « L denotes the composition of the first kind definedkdy, £) = L(t, &) = ftf K(t, 7) L(t, &) dr (see e.g. Yokota

(2006) and other literature on integral equations). Since

[ﬁf (&i(s) + ;@) ds]ml

’n _ ~ Hi - f(r+m+ i)
Kitd = (5:0+50)e ko D
: . [Faad”
Kir}(t,f) _ &i(t)e’ft (r+m)w (forallj=2,...,M),
we obtain
GLte = - (5’i )+ 'U'T(t)) e K2
Gi(te) = -mMe k™ (oralj=2...,M)

and the solution folj; (t):

Val) = gha+ 5 (a0 42 [T e lemEny @

Yij (1)

1 1, Cmffr i
§m®+§m®l‘eﬁhﬂa® (forall j=2....,M).

Inverting back tow;j(t) using the inverse function of (4.9), i.e.

wig(t) — bi(t) 1 g2 -+ Om o0 --- O Yii(t)
wi(t) -bit) | || 1 g2 - Gim 01 o Yia(t)
wim®-bi® ) [ 1 g2 - Om 0|0 1] Yim ()
the result of the proposition is derived. O

Note that, whereas wage rate responds immediately to theyehaf separation ratés response to the change

of matching rate or marginal production value accompaniegetiag It is caused by the fact that, while the
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(1) Response of wagesto matching rate:

N t
S e t

. f . ‘// . . ’/‘ t
75~ -5 -2.5—4& 2.5, 5,75 '

’
N
7 ~ s N s

(2) Response of wagesto marginal value of productioff /ol
w(t ) —
s oNof /ol ( '

=0 A /\ -

Both show reaction ofv to the forced oscillation in matching rate and in marginaldurctivity, respectively, where
u(t) = af /0l = 1+ sintis assumed. Vertical constants are arbitrarily adjustetiatothe phase shift is easily visible.
Used parameters arb:= 1, 7 = 1, r = 0.05, ¥ = 1 for the first graph anb = 1, u = 1, r = 0.05, t¢ = 20 for the
second wher¢ is the entering time to the bounded surface.

Figure 4.1: Response of wage rate to forced oscillation

adjustment of workforce through dismissal is achieved griynthe matching process is time-consuming. To see
the latter fact, suppose that there is only one kind of lallatching rate: fluctuates according ta(t) = 1 + sint

and other unrelated variables are fixed. Then, from equédi&), wage rate is given by

C0+C1(C2+’u())ft eXp[—f(C3+lg)dS}d§

Co + C1 (C + sint) e (€0st-C:0/2 f " dleost—Cat) 2y
t

w(t)

whereC; (i = 1,2,3) are indeterminate constants. The functional form is dramthe first graph of Figure 4.1.
The second graph shows the response of wages against thgedhamarginal productivity. Note that marginal
productivity is a decreasing function gf It will be shown that, when a firm is operating below the dethan
surface, the marginal production value is givendy/dl = fe of jal e~ K +)d¢ wherete is the entering time to
the demand surface. It assungdgdl = 1 + sint,'® which impliesF = psint — qcos for somep andq, therefore

the wage function becomes

W) = Co+F+Cy f " (Co+ F) SV
t

r sint — cost °° rsiné — co
Co + —2 + Clec3‘ f (Cg + —52 Sf e‘c3'fd§
t

These &ects of matching rate and marginal productivity would shoarenor less synchronized behavior in the

actual economy, since they are countercyclical from ealsrofThe lagged response shown above is not limited

16The case of binding demand constraint can be derived in desimay where the only dlierence is that a cyclical component is introduced
in the discount factor. On the other hand, if the economy diato leave the demand constraifiE/dl is not a simple integration of marginal
productivity.
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to a special case where intertemporal fluctuatiop of 9f/dl is represented by a sine curve. As far as they are
absolutely integrable in terms of time, similar propertierild be shown via Fourier transformation.

The above ffiect distorts the share between entrepreneurs and workersosiness cycles. It can have real
effects when the aggregate demand is a function of the relatbtgbdition between these two groups. Such
examples include the case where entrepreneurs héeeetit saving ratio from workers, and the case where the

investment decision of firms is a positive function of profits

Corollary 8. At steady state with one kind of labor, the wage rate w sagigfie following relation

F ~ ~
(4.10) F (oo |w,_& b, _r (w b
ol r+u+a)r r+u+or r+u+o\r r

Furthermore, if w> b, then

holds.

Proof. Equation (4.10) is obtained by settihg= 1, M; = 1 and all related variables to be at steady state. For the
latter half, we see thatF/dl > w/(r + &) is equivalent to1? + &1 + ué)w > (r?> — 5-2)b using equation (4.10). If

w > b, then (2 + &1 + ué)w > r’w > r2b > (r? — 52)b, which shows that this proposition is true. i

The steady state mentioned in the corollary can be eithevwmied or bounded steady states. It shows that, as
far as work is more preferable than staying unemployed fakers,the firm is willing to employ more workers
once there arises additional demand for outpEtirthermore, it should be observed that if output increathe
marginal productivity of labor, i.e. the left-hand side iquation (4.10), decreases. Thirscrease of output
is achieved through the decrease of real wage rate in the veaggaining, ceteris paribusThis result largely
depends on our setup assumptions that labor intensity istaoi) that workers are not allowed to do overtime
work and that profits are not redistributed to workers, saprovide incentives forféorts.

Now, we can present some general properties on wages. thiestxpected present value of wages is gener-
ally greater than that of unemployment benefits as far a® ttegnains production opportunities. Second, if the
marginal contribution to the value of production is decieg®ver time, wage rate is greater than unemployment

benefit.
Proposition 9. If 9F/al;j > Uj for all (i, j), then [~ Ejwij(s)e” Jesdimgs > (s g [t+Fitu)gs,
Proof. From Theorem 1, the conditiaiF/dl;; > U; impliesz; = (0F/dlij — U;j)/2 > 0. Namely,

2y = [ Enlwn - bJe 7 ds— [ (B ~b] - (w, b)) e [+ ds> 0
must hold for all , j) from (4.2), which yields

f En [Wih — bi] e’f(l‘+0~'i+lli)ds> maxf {Eh [Wih — bi] — (Wij — bi)} e*f(r+€ri+/1i)ds >0
t I t
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to obtain the result. O
Proposition 10. If 32F/atol;j — U; <0, then w; (t) > bi(t) for all (i, j) e Y and t.
Proof. From Theorem 6,

: 1. 0°F
(4.11) Eij(t) = > (Ui(t) + M(t))
which yields
H°F
otdl;;

Eij(t) - Ui(t) = %( (t)_Ui(t))So

From (2.4) and (2.5)
wij — b = (r + &i)(Eij - Ui) + uEn [Eih — Ui] - (Eij - U.) > 0.

O

The condition of Proposition 10 obviously holds at a steddteseither when the demand constraint is binding
or unbinding. On the other hand, whbris expected to rise only for a ficiently short period of time from now
on, it can happen that wage rate becomes temporarily snthlarunemployment benefit wherdas> U still

holds and thus workers do not willing to quit the current jobs

5. ProbuctioN PLaN

The results of the previous section show that the wage radusction of employment. Based on rational
expectation on wage schedwd), the firm determines optimal policy on vacancy post and disat. The optimal

problem for the firm is given by

0 L :
(P) J(I,y):mmaxxj; [f(l)—w(l)-I—Zki(m)}exp[—fr(r)dr]df

i=1

subject to

(2.1) lij = gjw@)m — oyl —xj, Yi=1...,Lj=1...,M
(5.1) 0<x; <X Vi,j

(5.2) m=>0 Vi

(5.3) f(<y

(5.4) j >0  Vi,j

li;(0), Vi, j given

where parametens g, 6, o- are generally time-dependent akds an arbitrarily large numbeiX is assumed to

be large enough so that a firm can accommodate any negatingebéy. r is bounded and(t) - 0 ast — .
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Also, y(t) € C? as of the time of planning. It can shaex postindifferentiability as a result of unexpected shift
of y. It will be proven that labor market constantly shows theestd long-run excess demand below unbounded
steady states. Namely, if the firm can employ additional wosldue to the increase gf then it can increase
profits. Walras Law implies that the goods market is alwaythestate of excess suppigardless the relative
price between output goods and lab@mn the other hand, the presence of a convex vacancy cosidfapecohibits
discrete increase of employment, which implies that aggfeegroduction and income can grow only continuously
from the current level, and thus the excess supply in the gowtket will not be resolved.

Denote the costate variables corresponding to each ti@msijuation ofj; by Ai;. An augmented Hamiltonian
H is defined by
(5.5) HE:=f)-w()-1- Zki(m) + Zﬁij (¢ijm = aijlij = Xij)

L
i=1 i,

. f.
+,Uo[)/—z gl—ij|ij]+;/1iljxij + ;#ﬁ (X— Xij)+Z)’im

i=ij

whereR(t, ¢) = ffr(r) dr and o, y{} > 0 for Vi, j,n andy; > O for Vi are Lagrange multipliers such that any

terms including them are zero. From maximization of Hamilém function, optimal conditions fany are given

by

(5.6) kK (m) = Z¢ij (/lij —ﬂofij) + i
j

(5.7) ym = 0

(5.8) Aj—pofiy = 4 — uf

wheref;; := 0f/dl;j, and costate dynamics is given by
(5.9) /.lij =(r+0'ij)/lij+y0(fij —O'ijfij)—(fij —Cij) Vi,
Wheref},- = Zab(azf/alijﬁlab) I'ab, o > 0 when the demand constraint is binding agd= 0 when not.

5.1. Optimal control.

(a) Off demand constraintslf the demand condition (5.3) is not binding, we haye= 0. Then, the optimal

condition forx is given by

0 if ;>0
(5.10) Xij = Vi,j
X if Ai; <0
Proposition 11. When {l) <, if 3; ¢ij4i; > 0, then m> 0. If 3; ¢ij4i; < 0, then m = 0.

Proof. If 3; ¢i4i > 0, the right-hand side of equation (5.6) is strictly pogfiwhich impliesm > 0. If 3; ¢ij Aij <

0, theny; > 0 since the left-hand side of equation (5.6) must be nonthegaFrom equation (5.7), it implies
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(a) Off demand constraints (b) On demand constraints

Figure 5.1: Optimal control

m = 0. If 3}; #ij4;; = O, then equation (5.6) becomegm) e Rt = 4. If we assumey; > 0, equation (5.6)
impliesm, > 0, contradicting equation (5.7). Thug,= m = 0. O

Corollary 12. If f(I) <y and m > 0, then x; = Ofor all j.

Figure 5.1 shows the caselof= 1 andM; = 2.

(b) On demand constraintd¥hen the demand constraint (5.3) is binding, it imposesiodisins on controls in
the form ofy}; ; fijlij = ¥, or
(5.11) Z[Z(ﬁijfij]m =Y+Z(0'ijlii+xii)'
i i i,
Since (5.11) is constraint expressed iffefiential form, the initial condition must be provided at twmjunction

time. However, given that the path is on the constraint serfa the neighborhood of the present time, (5.11)

sufices.

Proposition 13. Define K, (1a, Ab; 1) 1= Aia/ fia = Ain/ fib.

Q) If X, ¢ia fiakiaj < «/(m) for all i and j wherem is a solution to

y= Z[Zrbufi;]nﬁ —sz:o—”f”hj

2aPiadia — K:(rﬁ) _ 2aPiradia— Ki// (mv)
2aPia fia 2a ¢i’afi’a |

M
Yi, 1,

thenni = m and x; = Oforalliand j.
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(2) IfsetS:={(i, j) : Zarﬁiafiak;j > k{ (M)} is non-empty, then nis determined by

’ A Airj , (= .,
&y (My) = za: ¢i’afi’a(ﬁ - fi'/;) > ki, (M) Vi'e S

Y.a Piadia — & (M) _ Yadradia— «, (M)

= , Vi¢S.
Za ¢ia fia Za ¢i’a fi’a

On the other hand,ix=0forall (i, j) ¢ S and x; for all (i’, j’) € S is given by
Z fifj/Xifj/=Z{Z¢ijfij]fﬁ—zzdijfij|ij—Y
(i"-7)es AN P

and distribution among;x s is indeterminate.

Proof. DefineA;j := Ajj — pofi;. From (5.8),

0 if Aj >0
Xij =3[0, X] if Aj=0
X if Aj <0
SinceX is suficiently large, the condition < X is never binding, which implies tha#; > O for alli, j and thus
YadiaAia > 0 for alli. Then, since; = 0 for alli, «/ (M) = X, ¢iaAa. Solving this obtains

_ Za diadia — Ki/ (m)
12) S SN

for all i. First, suppose;; = 0 for alli andj. (5.11) and (5.12) together with; = O determinesn; which is
common for all range of; = 0 for all i, j for givenl. Let us denote it byn. Then, fromA;; > 0, the condition
xij = 0 for alli, j is equivalent to domaian)iafiakiaj < «/(my) for all i andj. Next, suppose that there exist some
i” andj’ such thatx.j > 0. Then, fromuge = Ai-j/ firj,

/1'/ /l‘/‘/
Gm) = Y dvatia 12 - 72 )
a

i‘a

From the demand constraint (5.13), (3, ¢ia fia) (M —m) > 0. On the other hand, from (5.12),n = m for

somei, thenm; 2 m; for any j. These leads tm > m for all i. O

Optimal control for eacht for the case of two undeclarable types is shown in Figure B)1 |(<iab| can be
interpreted as pressure that represents the necessitjrdotusal change in employment composition between
typea andb. If the pressure is shiciently weak, the structural change is achieved solelyuyhathe adjustment
of new employment and natural separation. As the pressoresgthe firm is compelled to adopt dismissal. The
bandwidth of the no-dismissal domain that gives= O for Vi positively depends ohlis. Namely, larger firms in
employment size less-likely adopt dismissal and rejediorstructural adjustment of labor for giveh i.e. for
given influence of labor on profit value. The linear contomcture of optimal control on the demand constraint

shown in Figure 5.1 (b) is a direct consequence of the presehthe demand constraint. It is related to the
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fact that the demand constraint defines the first integratlvbiings Hamiltonian-invariant vector field along the
contours. Namely, it reflects the symmetricity between suehctor field and the original Hamiltonian field that
H generates, in the sense that their Hamiltonians are Possamuting. To observe it, we need the following

theorem.

Theorem 14 (Noether’'s Theorem)For function H defined on a simply-connected domain, thefatg two
statements are equivalent.
(1) There exists a function G such that
(a) G is not a constant function and
(b) G satisfiegG, H} = 0 where{-, -} is Poisson brackets.
(2) There exists a one-parameter group of transformation wéatameter sgps, such that
(a) ¢sis a canonical transformation,
(b) ¢sis notan identity transformation.
Moreover, the vector field brought by infinitesimal transfiation of ps corresponds the Hamiltonian

vector field where Hamiltonian is given by G.

Obviously, the demand constraf®fl, 2) = f(I) -y = 0 has constant value over time, so it becomes one of the first
integrals which is not a constant function in termsloflf and which satisfiefG, H} = 33 ; 0G/dlij dH/04ij = 0.
Noether's Theorem tells us that the vector field which is gidiy the infinitesimal transformation ¢f should
possess§ as its Hamiltonian, i.e. the following relationship shotlaid:

9
=Zf”aTij'

i

dos

(5.13) s

s=0

Note that, sinc&G/dA;; = 0 for anyi, j, d/0l;; terms vanish. This vector field is shown in Figure 5.2 for the
case of two kinds of labor by identifying theftirential operator with the basis of the tangent space. Howvea
constructys that satisfies conditions (2) in Theorem 14 and thereforatgu (5.13)? By integrating (5.13), we

can think of the following class of action of gro@p(denoted bys € R) onR2Zi M| denoted byps, as a candidate:

Li 0
L 0

(5.14) M) + [ ——| s =1 s
A1 f11
Aim, fm,

where (11,...,LLm, ) is the state vactor and\(y, ..., ALm, ) is the costate vector after transformation, respec-
tively, and= is an arbitrary function. This transformation leaves th&ropl control invariant, thus it can be a

1 The property that the first integr@ of Hamiltonian dynamics characterized by Hamiltonkrsatisfies|G, H} = O is a general result and
its inverse also holds.
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The Hamiltonian of this vector field becomes the first integnathe
Hamiltonian field in the configuration space.

Figure 5.2: Vector field in the conjugate space brought byd#raand constraint

candidate to preserve Hamiltonian that condition (2a) oédrem 14 designates. Sindg # 0, ¢s is not an
identity transformation, i.e. condition (2b) holds. Thengning task is to find out appropriaseandC(l, ) in
equation (5.14) to make; a canonical transformation to satisfy condition (2a).

Choosei(, j*) € Y arbitrarily and ses = — A;-j-/(1 + fij-) and

C(l»ﬂ)=t(ln o o Lep )=y b o0 Iimg | Az oo /lLML)

accordingly to satisfy equation (5.14). This makes thisxgjeeof variables a canonical transformation. We assume

i* = j* = 1 without loss of generality. Denote the transformationtby(L; A) — (I; 2) = (¢(L); 2) such that

L1 l1 +y(t) — f(1) l11 o(t, L)
» L1 l12 ] l12 L1
v . = ) or equivalently @ =
Lim, lLm, lLm, Lim,

Then, sinceb defined above satisfies
Ai1 Aix

t .
oL N 5

Aiwm, Aim;
this is a variant of point transformation, a special caseaobnical transformatiotf
In sum, the linear contour map shown in Figure 5.2 is a refladtiat, the vector field corresponding to optimal-

control-preserving —and thus Hamiltonian-preservingshas the demand constraint as Hamiltonian.

183ee books on analytical mechanics, e.g. Arnol'd (1989) tm@LB98).
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5.2. Consideration on possible discontinuities of control vambles on junction points. If the interest rate
fully adjusts intertemporal demand, the economy is on theadal surface at any time in the market equilibrium.
However, if any disturbances are added on interest ratesfoe reason—such as monetary shocks—, then it can
be away from the constraint. The principle of dynamic pragrang tells us that there can be time-discontinuity
in costate variables and thus in control variables. Howekersection shows that it never happens with the model

in consideration.

Entering condition to the demand constraittet C ¢ RM be a configuration space. Define aentering time

t¢ € R to a state constraint surfagec C such that the Lagrange variahlgadjoint to the state constraiftyields
1o(t®) = uo(t®—¢) = 0 andup(t®+&) > O for any arbitrarily smalk > 0. Letz(t) : R — C be a path, i.e. a trajectory
projected onto the configuration space. Defi(t€) as anentering point Similarly, leaving time 't € R from a
state constraing is defined to beu(t') = uo(t' + &) = 0 anduo(t' — £) > 0 for any arbitrarily smalk > 0. z(t')

is called aleaving point Denote a set of all entering time By and a set of all leaving time by'. We also call

t/ € TN T' a junction time and(t)) a junction point. In general, costate variables can showe-iliscontinuity
either at entering or leaving points (see e.g. Bryson etl8638)). This is due to the fact that, over time, the state
constraint separates the normal of intertemporal transition of the neighborhood of the optimal trajectory on
the limiting surface at entering or leaving time from themat of the limiting surface itself. Despite the fact, for
the current problem, it turns out that costate variablesaateally continuous both at entering and leaving time.
This is due to the one-way property of the path, i.e. as faoasxternal force is added gnthe path permanently

stays on the demand surface. At conjunction tiraeT®uU T',

(5.15) Aig = A + pfia

(5.16) H™ = H* +py

must hold wherg is a Lagrange variable adjoint to the state constréffit— y = 0 and, for any variablé, we

denoteA™ := limyp A, A" = limyp A. From (5.15),

-
fial
for all i anda, which implies
; Ad; Al
(5.17) AKp = ta Ao _
fia fip

for all i, aandb such that # b. It implies that costate variables jump at entering poifdag contour lines ofm

as shown in Figure 5.1 so thldatb does not change. From (5.16),

Z/lﬂ (¢ijm_ — aijlij - Xﬁ) - Zki (m) = Z/lf] (¢ijm+ - aijlij - Xf]) - ZKi (M) +py
1) l 1] i
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Using (5.15), it turns out

0 ifteT®

(5.18) Zx.(rn) Zx.(rn) pru 3) (M =) + 37 (% - %)) 4 =

N p(V- fil] - fiy) ifteT

Or, the same relation can be expressed as

p (V- fuly - fy) ifteTe

(5.18) Zk(m) Zk(m+) Z iy ) (M —m+)+Z( - X)) =

i 0 ifteT!

Proposition 15. At both entering and leaving points; and 4;; are continuous at m= m and atd;; > 0. X is
continuous at i = 0 both at entering and leaving points whgre — 3 ; oijlij. Ify < =3 ; oijlij, xfl > 0 for

some(i, j) showing discontinuity at entering points. Also, enteriingetis characterized by

(5.19) m (1)) = Z i (t9)
where £ e T€.
Proof. Whent € T¢, 4; 20 forvi, j. If A; <0 for somei andj, thenx = X, which implies};; j fij 'a <Y,

violating the entering conditioB;; ; f.,la > Y. First, suppose;; > 0 for some andj. Then, (5.18) becomes

2, = 3 k() + 3k () () —mD) = XAy
i i i 1]

whent e T®. However, sincg; is a convex function ang > 0, the above relation is only possible wheh = m;
andx; = 0 for alli andj. On the other hand, it;; = 0 for alli andj, (5.18) yields¥; «xi(n}) = X «xi(ny) = 0
and agaim is continuous at zero for ail In this caseki () = A/ fia — A/ fin = A/ fia — A3,/ fip = O for all
i,a, bwhich impliesx;; = O for alli, j as far ag/> - 3; ; ovjjlij by Proposition 13. If/'< — 33 ; ojlij, some ofx;
are strictly positive according to (2) of Proposition 13ttisg m" = m andx|; = x; = 0in (5.18) givesp = 0

which implies that;; is continuous for all, j at4;; = A4; 20 from (5.15). At leaving points, (5.18’) becomes

Zki(nf)=zki(m+)+z i (M) (= ) ZX.J ;

whent € T!, and sincex is a convex function anet > 0, the above relation is only possible whepi = ny
andx; = 0 for alli andj. Putting these results in (5.18) givesws= 0 which implies continuity oft;; for all
i, j at leaving time. (5.20) comes from the fact thﬁ(m‘(te)) = 2j ¢ijA;;(t°) from (5.6), my"(t°) = m (t) from

Proposition 13 and (t°) = m'(t®) from the above results. O

From Proposition 15, entering points locate in domgipgia fiakiaj < «/(m). Itimplies that the entering to the
demand constraint must be “smooth” in the configurationsjgiae> - 3’; ; ojlij. Namely, growth of labor must

slow down as employment approaches to the demand consfriistimplies that the dynamics of employment
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immediately before entering istacted by the influence @i on the growth of each;. The next proposition shows
that the slowdown accompanies rotation in the configuratidrspace in a simple way when there are only two

differentundeclarablaypes.

Proposition 16. Suppose I= 1, M; = 2 andy = 0. If the entering point is located below the line

$11012

the path prior to entering shows clockwise rotatidi{t®) < 0 andi(t®) > 0. If entering occurs below the line, it

shows counterclockwise rotatioia(t®) > 0 andi(t®) < 0.

Proof. Denotel; := I3 andl; := I, for simple notation. From Proposition 15(t®) is continuous atn(t®) = m=

(o1 fily + 02f2l2) /(911 + 92 12). The slope of displacement vector immediately prior teeeng is given by

dlz|  _¢om-oaly - fi
diihye  ¢1m-oils ~ f2
Its time derivative becomes _ _
dfdp)_ fi(f f
dt\dl,/]~ fH\f £
Then,
d (dlp) _ fi _f
dt(dll)zo = 17T

i fu —fi2 || 2
— f—l ( f, f; ) =0

2 -fa f2 |l h
Note that the matrix in the last line has common principlearsrasv?f(l). Thus, from the concavity of, the
guadratic form part is positive. Thus, the signl'pf:oincides with the sign of the left hand side of the last line.
Fromi; S 0 & ly/ly S (¢201)/(¢1 02), we obtain
d (dl - P < ¢201
dt(dll)zo = Lo

Also, notel(t®) < 0 & i,(t) = 0, thus the proposition is derived. O

The path behavior depicted in Proposition 16 is shown in féigul on page 32. The behavior with more than
three types or with dierentdeclarablelabor types prior to entering is more complex. In the lattese; the
displacement vector is characterizeolotl,g{/dll—’b = (¢iaMm — dialia) / (¢joM; — o bl jp) the movement of which is also

affected by the relative convergence speethaindm;, not only relative size of labor.

Leaving condition from the demand constraibhtaving points exist in thinterior of ), ¢ia fiakiaj < «/(m). Note
that leaving from the demand constraint never occurs sosfara0. Leaving occurs when catchup to the growth

of demand becomes too costly in terms of accompanying vgceost. Asy becomes too large, it becomes
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suboptimal to stick to the surface of the demand constrélittat happens is that gggrows, the ban@® > k > C
(Zaqﬁiafiak;j < «/(m)) in Figure 5.1 widens while the width of other bands are laptstant. It implies that for
givenk, it becomes more likely to fall in the domaBi> k > C. Unless the value of is such that corresponding
optimal control keeps the state variabéemctlyon the surface of the demand constraint, as sodafalts in the
domainB > k > C, the state variables leaves the demand constraint. The¢em/more likely to happen ik| is

small.

Proposition 17. Leaving time is characterized by
(5.20) (M) = > o5 (1)
j

where t € T'. Leaving points satisfy the conditigh, ¢ia fiakl,; < & (M).

Proof. From Proposition 17 ang(t')) > 0, mandx are continuous at andx;; (t) = O foralli, j, from which (5.20)
is derived. From Proposition 1, ¢ia fiak}; < «/(M) must hold at = t'. Also, from (5.6) and/(t') > 0, 4;; > 0
must hold for somé, j. SUppoSes, dia fiak,; = «/(M). Then, for anyi, j, 3z dia fia (ﬂia/ fia — Ai,-/fn) = YaPiadia

holds which impliest;; = 0 for anyi, j. This is a contradiction. O

6. A Note oN THE CoNncaviTy OF COALITIONAL BENEFITS

The wage functions derived in Section 3, 4 and Appendix C apparted by Shapley value with the assump-
tions given so far. However, for them to be supported additily by nucleolus, concavity of coalitional benefit
of the entrepreneur and workefss required, which is given by

_ - [r
F(It)_ft (f—ZKi]e Irag

wherel follows the optimal employment path for the firm and the abegaation is evaluatedffothe demand
constraint because it relates to the case some of agentypwthbtically leave the coalition. Its instantaneous
part is concave, thus as far as the dynamics of states at&eblainiform over the state space, which in turn
implies uniformity in curvature of, one can expect tha&t(-) is concave. However, there can be a pathological
case in which the path starting from an internally dividirgim of two given initial states goes too far so that
concavity of the instantaneous part as a function of th&ilrpbints is violated. Denote the optimal path starting
from 1° by I(1°, ') wheret’ > t denotes time. Theri(al® + (1 — @)I,t’) can go too far away fron(1°, t') and
(1%, t') at some time’ so that € — 3 )| _y,10,0_ayey < @(f = 2|y + Q= )(f = T,y 1,,, bECOMeES

to hold where all variables are evaluated on the optimalpathe optimal dynamics is given by

i =¢;- m(/l(l)) —oi-l;
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where the linear part preserves the internally dividingipbeing the internally dividing point of two end points

at any time, so the pathology comes from the degree of h@adlity in the first term. From (5.6),
m =~ (9 - 4)

on the optimal path, which shows is a positive function o®; - 4;, and

te L .
(6.1) /lij(t) = I (ﬁ _ Z%T)e_ﬂ”mj)df + Cij(te)
k=1 !

wheret® is the entering time to the demand constraint. It shows thifwumity in curvature off is required to

avoid such a pathological case.

7. SreEADY STATE ON THE DEMAND SURFACE

The model allows for analysis of a perpetually moving ecoynday truncating the economy in ficiently
distant future. However, to settle down the endpoint of@iestariables, it is sometimes convenientto analyze the
steady state. The previous analyses showed that unlessishaordinated expectation among economic agents
which persists for infinite length of time, the economy wititmeach to the unbounded steady state. On the other
hand, the economy can be settled in a steady state on thenstgtidemand constraint. Suppgse: 0 in this
section. Then, we find out strictly positive amount of rei@etof job application at steady state “almost surely”.
A bounded steady state maximizes profits obtainable whéalistate of labor can be directly chosen. Consider

the following static problem.

L
(P) mx{f (I =w()- 1~ Zki(m}
’ i=1
subject to
(2.1) ¢ijm=(r+o-ij)lij +Xij,Vi,j
(5.3) y=f(l)

Theorem 18. Steady-state solution of problem (P) is equivalent to thetsm of (P’).

Proof. The optimality condition of the problem (P’) is given by

(5.6) K(m) = > i
i
: Ao fi—ei L
(5.9) /l” Bl I + 0ij - 0I’+O'ij
0 if ;lij >0
(5.10') Xij =

X if 4 <0
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and the constraints Wheﬁ@ andyp are costate variables adjoint to equations (2.1") and Y&&Spectively. From

(5.6") and (5.9)),

B Zj r-‘f(i)j'ij (fij —cij) - K'/(m)

dii £
2] mfu

(7.1) Ho

SinceX is arbitrarily large and therefore the steady state cooifior [;; does not hold whew;; = X, fli,- <0is

impossible for ali. Thus,4; > 0 or ;; = 0. If there exist{, j) such thatl;; = 0, then for suchi( j)’s

. fij—gj S
(7.2) fio = % V(i j), 4ij =0
i
and for otheri( j)’s such thatl;; > 0,
(7.3) xj=0  V¥(i,j), ;>0

holds. Then, the solution is completely characterized by’ 25.3"), (7.1), (7.2) and (7.3).
On the other hand, the bounded steady state solution to ii@arproblem (P) is given by imposing steady
state conditioh = A = fij = 0 to each optimal condition. Imposing it on (2.1) and (5.3pdts the same condition

as (2.1’) and (5.3’). From (5.9) and the steady state cammiti

(5.9”) Ay = fj—c, oify

I+ 0ij OI' + Tij ’
Substituting this to (5.6) derives

~ 2 rf—i;ij(fij - Cij) — &/ (M)

i 5 ’
rZJ I +0ij fl]

(7.1) Ho

which is equivalent to (7.1) if we defing = ruo. From (5.9) and (5.9") ;5 = iij + uofij, which results in

equivalence relation between

0 if Aj>0 0 if 4ij >0
Xij = in problem (P) = Xij = in problem (P’).
[0,X] ifAj=0 [0,X] if 4;=0
All of the above equivalences show that problem (P’) is egeint to problem (P). O

The next theorem shows that, in general, the pointin whingdnun profit is maximized does not coincide with
the point in which a bounded steady state is achieved witfirimg}. It means that either dismissal or rejection of

job application will occur at a bounded steady state.

Theorem 19. If max M; > 2, the set of parameter®, o) that brings x = 0 for all (i, j) at steady state has

measure zero in the parameter space for given f and



PRODUCTION THEORY WITH CONVEX LABOR FRICTION 31

Proof. From Theorem 18, the proposition can be proved via probleéjn xRvhich appears in (P’) can be viewed

as a slack variable substituting equality of equation §2vth inequality. Namely, it is equivalent to the following

problem:

L
(P") min {w(l) 1+ izl]xi(m)}
subject to
(2.17) dijm Z(r‘*‘o'ij)lij» Vi,
(5.3) y=f(l)

Obviously,my maximizes the maximand when it is settp= min;{(r + oj)lij/¢i;} in equation (2.1”). Maximiza-
tion on| with this condition completely determines solution foHowever, in general,

I+ oijj I+ oij
|ij * Iij

Bij dij’

foranyj’ # j, makingx;; > 0 for anyj’ such thatj’ # arg min{(r + oi;)lij/¢i;}. Even when the condition

Bij - dij’

r+o-i,-| r+o-i,-/|
ij

(7.4)
forall j, j’,i holds, it fails to hold once any small perturbation is addedie ofr,o- or ¢ keeping other parameters.
Namely, a set of parameters which satisfies (7.4) does ndaieoimner points, which implies that it has zero

measure in the parameter space whgn M; > 2. o

The above theorem shows that dismissal or rejection of egpdingenericallyoccurs at least in one of the labor
types not only in transition on the demand constraint serfad also at steady state, when there exist more than
two labor types in the economy.

Figure 7.1 shows typical dynamics toward steady state vihenl andM; = 2. Paths starting from initial
pointsA; andA, converge to a steady stafevia entering point®; andB,, respectively, when steady state demand
level isy;. The entering to the demand surface shows clockwise rotatimve lineOP and counterclockwise
rotation belowOP as shown aB; andB,. If the demand shifts up unexpectediwte y, in neighborhood o€,
the path starts to move toward the new demand surface arccafiaterclockwise entering, it converges to the

new bounded steady stdde

8. A Note oN DEMAND FOR WORKING CAPITAL AND THE RATE OF INTEREST

One of characteristics peculiar to search models is thasfara required to put “advances”. Especially, when
| = 0, they must find a way to finance those advances, as the @bssiecch as Quesnay and Ricardo used to
assume. Let us assume firms demand for working capital ferréi@son. Sinca is higher wherl is low, the

demand for lending is higher for a smaller firm with unboundethand. On the other hand, at a bounded steady
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Figure 7.1: Typical trajectories andfect of unexpected shift of demand constraint

state, requiredn and therefore necessary working capitéh) are higher whery is higher. This observation
provides two contradicting tendencies depending on whetheot the demand constraint is binding. Suppose
that firms are homogeneous and supply of working capitalistamt. If the demand constraintis unbinding in the
economy, interest rate gradually decreases as the ecorramg.gOn the other hand, comparing two economies
staying at bounded steady states wittiedent level ofy, the rate of interest is higher for the developed economy
than the other. This fact may explain so-called allocatiaragox (Lucas (1990); Gourinchas and Jeanne (2007)).
Even though our model did not introduce physical capitatajpital should be interpreted as fund to cover the
set-up cost, the same logic can be applied in an extendedlrtotmder the presence of friction, the state of

coordinated expectation criticallyfacts the equilibrium rate of interest.

9. CoNcLUDING REMARKS

This paper showed that if there is search friction repreg#aty a convex vacancy cost function ——however
small for a given amount of hiring——, the economy obeys tlieative demand principle. Wage rate is always
smaller than marginal productivity, and a direct attempower wage rate will not remove unemployment, as the
old Keynesian arguments suggest. It should be noted thatiadyof sticky prices is not assumed in this model.
The existence of convex vacancy cost prohibits convergerme unbounded steady state, oeguilibrium in the
long run, without persistent coordination of expectation. Wage iaflexible reflecting redundant resources in the
labor market. One of major consequences of the search tiethigt, when search friction is present, Keynes'’s first
postulate of classicals —the wage is equal to the margiralymt of labour— must be abandoned on a rational
basis, but also the present paper showed that, togetheawithvex vacancy cost, the following second postulate
must be modified from the literal sense: the utility of wagd®ewa given volume of labour is employed is equal

to the marginal disutility of that amount of employment.tkesd, the second postulate is maintained in a broader

19 there is no genuine working capital, those financial angsiital capitals coincide.
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sense that workers follow their optimal choice, only on armary. Workers’ optimal behavior is to work more
below unbounded steady states, but such behavior is boundkahited working opportunities. Anyway, this
partial rejection of the second postulate enables invalyninemployment — not by secular interpretation, but in
the original definitionmen are involuntarily unemployed if, in the event of a smad in the price of wage-goods
relatively to the money-wage, both the aggregate suppiafur willing to work for the current money-wage and
the aggregate demand for it at that wage would be greater tharexisting volume of employmékeynes (1936,
p.15)). Since wage bargaining is based on rational expentan both sides, there is no built-in mechanism
which brings the economy back to a natural level of output matural rate of unemployment. If there is a
tendency toward full employment, it must be pursued in erogs factors from the model presented here. One
of important factors excluded from our model is the postjbfor workers to escape to autarky. This cdteat
long-run unemployment rate and can be a source of povepy tra

In search models, profit of a firm is strictly positive even whke commodity market is competitive. The
fact that an entrepreneur earns non-zero profit and that $ienhasive power in bargaining as suggested in this
paper raises a fundamental question that who really is thigepreneur”. The question cannot be neglected when
one undertakes explicit specification of the demand sid=esirefects the distribution of income and potentially
the level of investment. There can be two most straightfodvoait extreme ways of extension: one is to assume
that income level has no impact on pattern of consumptionmrestment. The other is to assume that there are
two classes, haves and have-nots in the Kaldorian way. Tier lgerally assumes that the entrepreneur (and
his successor) embodied the knowledge necessary for firm’'s management and that gvuemtransferred to
workers. However, as many examples show, even family ssocemust learn management as workers before he

succeeds the company. This fact shows that more compliggtrdal forces are working in firms’ organization.

AprpenDIX A. DisTRIBUTION OF COEFFICIENTS OF (3.3)

Proposition 20. Let ({1, ..., {n) € NN be a vector of parameters. For anyg/N such tha0 <y, < £, define

M4
(A1) TYL - YN 4155 4N) :=1+ZlN Z (Zlgy))
=1 ZEM

Then, equatiofA.1) is a probability mass function.

Proof. T > 0 is obvious. If we sum it up for alf;, it becomes

1 & o Hi’\il(i)
ZT Bl 1+Zi’11§izmz Zi“ilay

=0 ym=0 (Zi’il)’i)
1+ XN 468 s g ()
1 2

- - Mult.Hypg.(1, ..., YN K 41, ..., ON)
1+ Zi,il i kZ::o Z;k
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=1

where Mult.Hypg s, ..., ¥n; K; Z1, . . ., {n) is @ multivariate hypergeometric distribution with paegter K; £1, . . ., n).

It sums up to one if alh’s are summed up keepifgn; = k. O

Proposition 21. Define a density functioif : RN — R characterized byr’ such that
(A.2) rY‘(Xl,...,X|\|)('.“1-'-d|[\| ='Y‘(y1,...,yN)

where x = yidl; and0 < X < |; where | is fixed for any; and d| keeping | = &dl; (i = 1,...,N). Then, the

functional form ofY is given by

‘Y’(X]_,...,XN) =6(1- ﬁ, R X—N
l1 In
as(; — oo for all i where § denotes Dirac’s delta, i.e.
o ifVi,z=0
6(z1,...,2n) =
0 otherwise
and
1 1
(A.3) ff 6(zz,...,zn)dz - --dzy = 1.
0 0
Proof. From Proposition 20,
& IN
Z Z T(ye,....yn) =1
y1=1 yn=1
Using (A.2), it means
Iy In
Z Z 'Y'(X]_,...,XN)dh_---d'N =1
xp=dly xn=dly

which leads to shoW’ satisfies property (A.3) a$ — oo, i.e. dl; — 0, for alli. Note that

(1 160523

if there existd such that; < ;. Then, (A.2) becomes

5 1 MA(G) 1
T(lq,...,IN) 1+Z|’11§I (?’\'\%14) dly---dly
i=1Yi

11 (MLE) ()
MLl xha (509

Zi’\ﬂl Yi

as¢ — oo for all i if there existd such thaty; < ¢. On the other hand, ¥; = ¢ for all i, we have]’[i’\il (j‘l) =1
and thus
1

T(l1,. .. dN) = ————.
et TN g
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Then, from (A.2),

T In) = ! 1
1,---5IN - 1+le\i1§|d|l~~d|N
_ 1 .4
M1+ 38,4
The second fraction diverges &s become large, therefofg(ls, .. ., Iy) — o asé — oo for all i. O

AprPENDIX B. A ProperTY OF EsSENTIALLY CoNcavE GAME

Below is the proof of Lemma 3 in section 3.

Lemma 22(Lemma 3) If game(€2, v) is essentially concave in which players are partitioned fmugs such that
Q= Ui"ﬁl Si andﬂi“ﬁl Si = 0, then for any ST C Q such that Sc T, the following inequality holds.
n
VT) = V(T \S) 2 Y IS N Sll[MT) = (T \{s())})]
i=1
Proof. We use the fact that(T) — V(T \ S) has common value regardless of how playerS afre removed from

T. DefineGy,i,...i,, (N, . .., N;,) = ﬂk:{l,...,m:nik;&O) ﬂ?‘:kl{sk(j)} where 1< m< M and 1< n; < N;. Whenn;, = 0 for

all k, define&;,j,..i, (0- - -0) = 0 for convenience. Then, for givéoe {1,..., M},

Y(T)-v(T\'S)
N Ni,
Z [V(T \ Gk(nk — 1)) — V(T \ ek(nk))] + Z [V(T \ gkiz(Nk» ni, — 1)) — V(T \ gkiz(Nk» niz))]

) ne=1 n,=1
N;
+ -+ zM: [V(T \ 6ki2»-»iM(Nk, e NiM—l’ N, — 1)) — V(T \ Skiz-»-iM (Nl, ey NiM_l, niM))]
niy =1

\%

N
M Z T\ @i - 1)) = (T \ S(ni))]
n=1
wherei,, ..., iy are taken in an arbitrary order so that: k andij # ij if j # j’. The last line comes from the

essential concavity. Summing up the above inequality idk al 1,..., M,

M Ng
DTMT A\ Slne - 1) = (T \ &)

v(T)-v(T\S) =
k=1 nc=1
M
> IS NS MT) - v(T\ {sdi)))]
k=1

foranyj =1,..., Nx again from the essential concavity.

AprPENDIX C. WAGE FUNCTION IN A GENERAL CASE

In this section, the case is handled in which worker separatites are not common for all type of workers. The

following approach can be used not only to obtain an exgdiizittional form but also for numerical calculations.
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The Bellman equations (2.4) and (2.5) are equivalent to

Ui(t) Es [f bi(r)e k" dr+ EiEij(f)e_f‘fr

E: [fV\’ii(T)efrdT"'Ui(f)efr}

Eij (1)

in integral forms, wherg&, is an expectation operator gnUsing partial integration, they simplify to

(C.1) Ui(t)

Iw(bi(f) +#i(§)EjEij(§)) e*ff(rwi) dé

(c2) Eij(t)

ftw(Wii(f) + o‘ij(f)U(g)) eﬁf(rmj) de

wheregij(£) » 0 andy(¢) + 0 as¢é — +oo are assumed. t; + 0 andy - 0, thenu - 0, since replacement
demand for labor does not vanish. We leaegbitrary but only assumed to be integrable. They guarantiseence

of U andE. (C.1) and (C.2) are singular Volterra integral equatioithie second kind and have a structure of

€3) Vi(t) - f T Ki(t.£) V(@) dé = hi(t)

whereV(t) = '(Ui(t), Ei1(t), ..., Eim (1)), theintegral kernel Kis given by

'
Kioo Kiox -+ Kiom 0 qui@e Fn . guum@e b
Ki = Killo Ki.ll Ki.lMi _ di1(é) e ko s
. N .. : . O
KiMiO KiMil e KiMiMi &iMi(é‘:) e_ftf&iMi

and theexceptional part his given by°

hio [b@e Fem g
h = hy | | [Twa@e fern g
hin, 7 wim (@) e Fovow) de

The following proposition can be derived.

Proposition 23. The solution to the simultaneous equati¢@s3)is given by
O =h®+ [ GtohEde
t

«{
where G is a Neumann series matrix in whichg@t,&) = 277, Kipq(t,€) (p,g = 1,..., Mj), provided that

Gipq(t, €) uniformly converges.

20Subscripii is sometimes omitted below when obvious.
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The composition of (0)-kernel is given by

M; M;

K. = D (Kor #Keo) (66) = > (Kar * Keo) (8.€)

=0 ¢=1
Mi
—ek f u(rye ko {Z NG ] dr
t f=)

The integral part equals the expected probability that aampioyed worker as of timeis employed afterwards
and separates again exactly at tithevhere expectation is taken for possible undeclarable typeber cross-

compositions are given by
K*Z(t §)=K*2 =0 Ve=1,..., M
(VAN 0 » - ) s> Vi
K2,(t.&) = f KpoKog = Kpo * Kog ~ V{(p,@)Ip=1vg>1}

The iterated kernels alternate between zero and stricHifipe numbers depending on whether the multiplicity of

the iteration is odd or even. That is

x x K2 | 0 e 0
00
K2n . K2n
00 OM; .
0 :
* * Ko % K20 % K
po * Pvgg * M0q
K2n . K2n
M;0 Mi M;
0
and
* * 0 Kg(()n_l) * K01 te Kgén_l) * KOMi
K2n71 . K2n71 =
00 OoM; 2(n-1)
_ KlO * KOO
KZT’Fl . sz;lfl O
M;0 Mi M 2(*n—1)
KMiO * KOO

forn=1,2,... K2 comprises of the core part of iteration in each element and

K%g(t,f)zefffdrnlftTn—ldTn2..,ftfz(ft”A)(fT:zA)...(j:_lA)drl

whereA := effngo_ The above can be interpreted as the expected discountbdlplity that an unemployed
worker as of timet repeats the cycle of employment and separatidimes in the period oft(¢] and the last

separation occurs exactly at tinfe Summing up the above results for allwe obtain Neumann seriéz; =
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p 2(-1) & 2(-1) &
T K2 S KA 4 Koy T KA s Koy,

*

2*—1
Zn KOl * KO(()n )
: Kpo * 2in Kgg * Kog

2*—1
Sn Ko * K

Using these results, the explicit form of wage rate functiogiven by the following proposition.

Proposition 24. The wage rate of typ§; j) worker as of time t is given by

M; oo ((® .n
wy (1) = @y (O + ) ft [Z Agt 5)] & O (o) de
k=1 n=1

where
Mi
AL ) = p(®) D o f (Gxi(t. ) = Goj(t, D))dr — 05 (V) f Goj(t, 7)dr
k=1
() = 6F('[)/6|2ij +hi() i) —20'ij(t) jt“’" o) & g
o5 [ Amdab@e e
for alli, j.

Proof. From Theorem 1Eij = [Ui + 62F/(6t6|ij)] /2. Substituting each value function by the time-derivatifre

the result of Proposition 23, we get

OF/alij (1) + bi(t)  pi(t) — o (V)

1 (ee]
(c4) Wi (1) = 2 2 Mty ft Ajolt, &) bi(¢) & 1) dg

M
1 | " -
"2 Z ft At &) wi(&) e o des
k=1
for all i, j. Solving simultaneous equation (C.4) obtains the result. ]
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