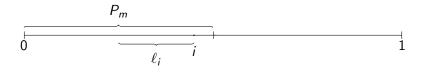
Inefficient Municipal Boundaries Evidence from Japan

Masayoshi Hayashi University of Tokyo

Aoyama Gakuin University 24 November 2010

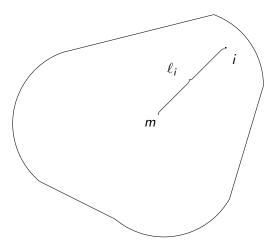
Masashi Nishikawa

Eric G Weese Yale University and CIFAR How Inefficient are Majority-rule Boundaries?


- 1. 2 dimensional variant of Alesina & Spolaore [1997] with sticky borders
- 2. Applicability of Japanese municipal data
- 3. Estimate parameters
- 4. Calculate differences between majority-rule boundaries and social optimum via simulation

One Dimensional Model

Alesina & Spolaore [1997]


One Dimensional Model

Alesina & Spolaore [1997]

$$U_{i} = v(q_{m}) - \theta_{1}\ell_{i} - \tau_{m}$$
$$= \theta_{0} - \theta_{1}\ell_{i} - \tau_{m}$$
$$\tau_{m} = (c(P_{m})q_{m} - T_{m})/P_{m}$$
$$= k/P_{m}$$

Two Dimensional Extension

- 1. Decision problem in \mathbb{R}^n
- 2. Voters with Euclidean preferences
- 3. Two candidates, both office motivated
- 4. Vote probabilities are linear in utility difference

Then the (generalized) median voter's ideal point is the unique winning policy

This is also the social optimum

Estimation Strategy $U_{im} = v(q_m) - \theta_1 \ell_{im} - \tau_m$ $\tau_m = (c(P_m)q_m - T_m)/P_m$

- $c(P_m)$ cost of public services
- $v(q_m)$ value of public services
 - θ_1 disutility of distance

- T_m transfers
- P_m population
- ℓ_{im} distance

Estimation Strategy $U_{im} = v(q_m) - \theta_1 \ell_{im} - \tau_m$ $\tau_m = (c(P_m)q_m - T_m)/P_m$

- $c(P_m)$ cost of public services Ministry estimates
- $v(q_m)$ value of public services Optimality assumption
 - θ_1 disutility of distance survey data (via GMM)
 - *T_m* transfers Ministry formulae
 - P_m population census data
 - ℓ_{im} distance grid square census data

Cost of Government Services

First, determine $c(P_m)$, as this does not require other parameters

Reiter & Weichenreider [2003] (19 papers, 83 estimates) Median estimate: diseconomies of scale

Hypothesis Estimation hard when observations endogenously disappear

In Japan, transfer scheme froze boundaries for 30+ years

inefficient observations persisted

Direct approach: use central government estimates of costs

Cost of Government Services - Central Govt. Estimates

- 1. Why do they exist in the first place?
- 2. Why would they be correct?
 - Iobbying...
 - other corruption...
 - empire building...
 - regression on spending...

Local Government Finance LAT ("Local Allocation Tax")

$$LAT_m = max(SFN_m - SFR_m, 0)$$

SFN ("Standard Fiscal Need") is estimated cost of providing "national standard" level of service, less prefectural and national subsidies

SFN calculated based on a based on a per capita "unit cost" unit cost higher for jurisdictions with smaller populations

LAT determined by SFN and SFR ("Standard Fiscal Revenue")

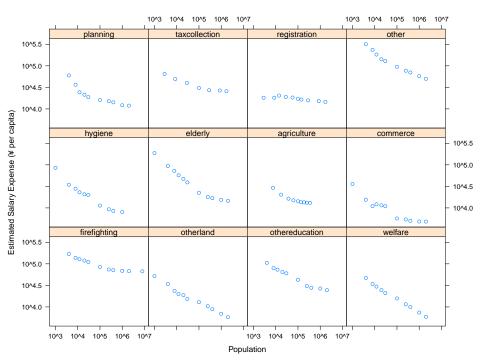
Government Responsibilities

	Municipality	Prefecture
Police:		all
Firefighting:	all	(exception: Tokyo)
Public Works:	parks	rivers
Education:	schools	teachers
Welfare:	sanitation	labour
Ag. & Industry:	forestry roads	forestry research
Administration:	resident registration	driver's licensing

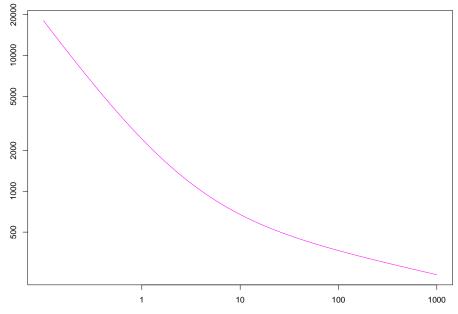
Local Government Finance

Standard Fiscal Need - Municipalities

6 categories of government service, 21 subcategories (eg. Administration - Tax Collection)


Each subcategory: general and capital expenses

General expenses further subdivided:

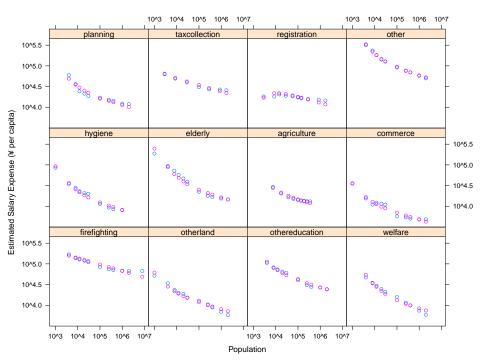

- Personnel
- Contracted services
- Travel
- Þ ...

SFN - Non-Personnel Expenses

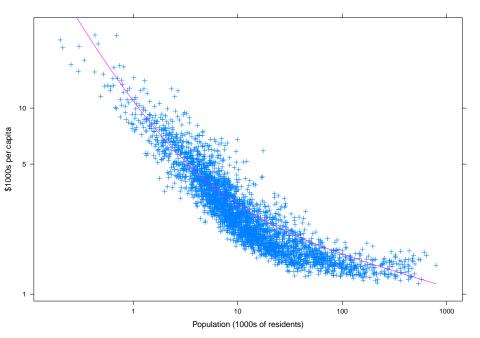
- Other General Expenses
 - Sometimes reported only post-subsidy
 - Subsidy reporting not standardized
- Capital Expenses
 - Evidence of lobbying
 - Used to balance Ministry budget

SFN Personnel Expenses

Population (1000s of residents)


SFN - Personnel Expenses - Parametrization

Let the personnel cost of providing the national standard level of service in subcategory n be


$$c_n(P) = \alpha_n + \beta_n P^{\gamma}$$

Then the personnel cost of providing the national standard level in all subcategories would be

$$c(P) = \sum_{n} \alpha_{n} + \left(\sum_{n} \beta_{n}\right) P^{\gamma}$$

"Standard Financial Need" (Per capita, log scale)

SFN – Correctness

- $1. \ \ \text{Separate system for pork}$
- 2. Plausible to outside experts
- 3. Consistent with observed mergers
- 4. Consistent with (lack of) capitalization

Value of Government Services

Given c (from SFN), $\tau_m = \bar{\tau}$, and assuming observed spending is optimal given municipal boundaries:

$$c(P_m)q_m^* = \bar{\tau}P_m + T_m$$

Local Government Finance Local Allocation Tax

$LAT_m = \max(SFN_m - 0.75\bar{\tau}P_m, 0)$

SFN ("Standard Fiscal Need") is estimated cost of providing "national standard" level of service, less prefectural and national subsidies

$$T_m = c(P_m) - 0.75\tau_m P_m$$

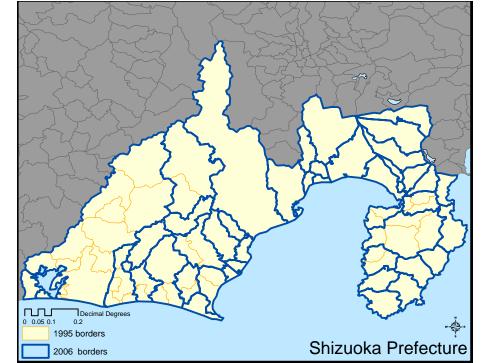
Value of Government Services

Given c (from SFN), $\tau_m = \bar{\tau}$, and assuming observed spending is optimal given municipal boundaries:

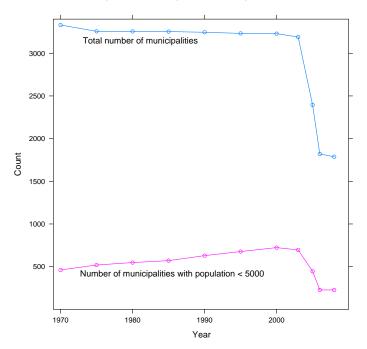
$$c(P_m)q_m^* = \bar{\tau}P_m + T_m$$

= $\bar{\tau}P_m + c(P_m) - 0.75\bar{\tau}P_m$
$$0.25\bar{\tau}\frac{1}{q_m^* - 1} = \frac{c(P_m)}{P_m}$$

Thus $v(q) = 0.25\overline{\tau} \int_q \frac{1}{q-1} dq$


use $v(q) = 0.25 \overline{\tau} \log(q-1)$

Estimate θ_1 via discrete choice model using stated preference data

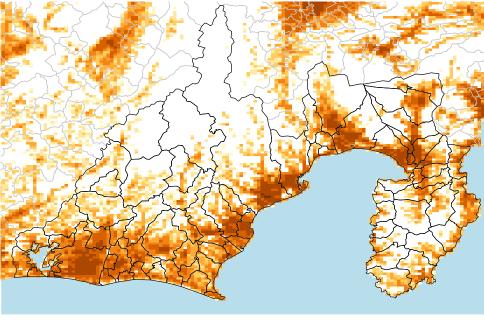

$$U_i(m) = 0.25 \overline{\tau} \log(q_m - 1) - \theta_1 \ell_{im} - \tau_m + \epsilon_{im}$$

Data source: surveys of residents over preferred merger partners, 1999-2009

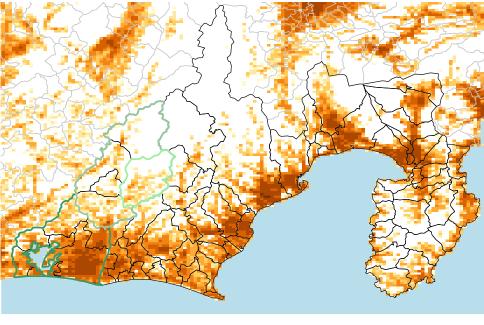
Japanese municipalities, 1970-present

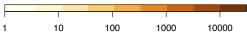
- ▶ 3229 municipalities reduced to 1727 via about 700 mergers
- ▶ 500 proposed mergers abandoned, but generated activity
- Surveys conducted in at least 900 municipalities
- Data issues: only about 200 currently available for analysis

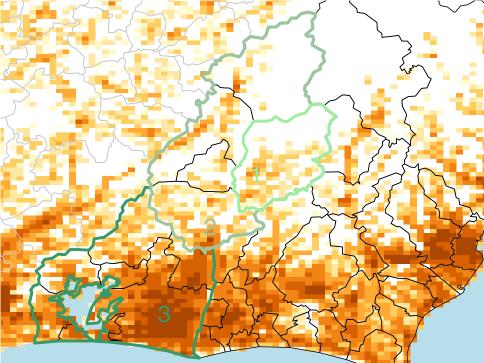
Survey Questions - Example


Hamamatsu City merger, Shizuoka Prefecture

Haruno Town - prefered merger structure 14 municipalities around Hamamatsu City 37.6%


14 municipanties around mainanaisu City	51.070
Tenryuu, Tatsuyama, Sakuma, Misakubo	24.5%
Tenryuu, Tatsuyama	18.0%
Other	1.4%


Tenryuu Town - necessity of some merger (N=7300)Necessary30.6%Probably necessary31.8%Unnecessary7.8%Probably unnecessary10.3%Don't know17.2%


Maisaka Town - approval of specific merger Approve 67.9% Disapprove 20.9%

Discrete Choice - Utility Function

Observed heterogeneity with aggregate-level data

Estimate directly off of theoretical model:

$$U_i(m) = v(q_m) - \theta_1 \ell_{im} - \tau_m + \epsilon_{im}$$

with fraction in m preferring m' to other options m'' being

$$\int_m f(i) \cdot Prob(U_i(m') > U_i(m'') orall m'') di$$

where f(i) is population density in mesh cell *i*

Discrete Choice - Utility Function Results (GMM)

$$U_i(m) = v(q_m) - \theta_1 \ell_{im} - \tau_m + \epsilon_{im}$$

$$\begin{array}{ccc} \theta_1 & 9.43 \\ & (2.78) \\ \sigma & 0.45 \\ & (0.07) \\ N & 274 \end{array}$$

(θ_1 with respect to distance in kilometers) units: $\bar{\tau}/1000$ (about \$1 - \$2) Inefficiency of Majority Rule Boundaries

- 1. Approximate optimal partition
- 2. Generate sets of valid majority rule mergers
- 3. Compare predicted majority rule mergers to actual mergers
- 4. Compare optimal mergers to majority rule mergers

Inefficiency of Majority Rule Boundaries Social Optimum

- Using $U_i(m)$, $c(P_m)$, etc., calculate social optimum Finding optimal partition is NP complete problem
- Thus, use Hajiaghayi, Mahdian, Mirrokni [2003] approximation (for "production transportation problem")

Optimum number of municipalities: 300-500

Inefficiency of Majority Rule Boundaries

Decentralized mergers via majority-rule

Use simplification of Ray & Vohra [1997]:

V is set of all refinements and coarsenings π is a partition of municipalities into mergers S is a set of municipalities (i.e. a merger)

$$\Pi^* = \{\pi | \forall S' \in V_\pi, \exists m \in S' \text{ s.t. } U_m(\pi) > U_m(S')\}$$

Randomly generate elements from Π^* , and look at mean Also look at "good" elements of Π^*

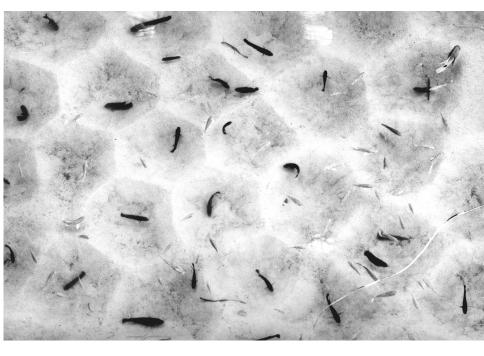
Decentralized mergers lead to many more jurisdictions (1000+) Inefficiency due to small scale: \$100 - \$200 per capita p.a. (Results extremely preliminary)

Is this also a potential explanation for reluctance to allow independence referenda etc.?

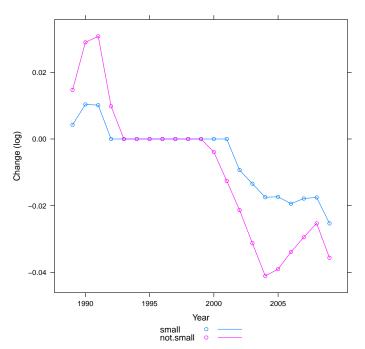
Number of Jurisdictions

$$\mathbb{R}^{1}(AS 1997)$$
 $\mathbb{R}^{2}(This paper)$

Stable:
$$\tilde{N} = \left(\frac{1}{2} \cdot \frac{ga}{k}\right)^{1/2} \qquad \tilde{N} = \left(\frac{\sqrt{2}}{\sqrt{5}} \cdot \frac{ga}{k}\right)^{2/3} \cdot \frac{1}{\sqrt{3}}$$


Efficient:
$$N^* = \left(\frac{1}{4} \cdot \frac{ga}{k}\right)^{1/2}$$
 $N^* = \left(\frac{\lambda}{2} \cdot \frac{ga}{k}\right)^{2/3}$

 ≈ 1.41


Ratio: $\tilde{N}/N^* = \sqrt{2}$

$$\tilde{N}/N^* = \frac{2}{\sqrt{3}} \left(\frac{1}{\lambda\sqrt{5}}\right)^{2/3} \approx 1.29$$

 $\lambda = \sqrt{\frac{2}{3\sqrt{3}} \left(\frac{1}{3} + \frac{1}{4}\log 3\right)} \approx 0.4$

Land Prices

