The Peril of the Inflation Exit Condition

Fumio Hayashi (GRIPS)

JEA Presidential Address, 9 September 2018

Policy Rates and Reserves, Japan, Jan. 1998 - May 2018

• net policy rate = policy rate - IOR.

Takeaways

- Two monetary policy regimes:
 - **P** (where the net rate > 0 and excess reserves ≈ 0),
 - **Z** (where the net rate \approx 0).
- Three Z spells
 - Spell 1: March 1999-July 2000 (17 months), exit in August 2000,
 - Spell 2: March 2001-June 2006 (64 months), exit in July 2006,
 - Spell 3: Dec. 2008 onward.
- Not all Z spells are alike.
 - Spell 1 and 2: IOR = 0 in both. Excess reserves \approx 0 in Spell 1.
 - Spell 2 and 3: excess reserve dynamics different.

Two Findings about Spell 2 (March 2001 - June 2006)

- (the QE effect) Measures of excess reserves have positive effects on output and inflation (Honda *et. al.* (2007), Honda (2014), and others).
- (*Policy-induced* exits can be expansionary) Exiting from Spell 2 one month earlier, in June 2006, would have been *expansionary* (a regime-switching SVAR evidence in Hayashi and Koeda ("Exiting from QE", 2018)).

Plan for the Rest of My Talk

- Executive summary of the regime-switching SVAR (4 slides).
- Evidence for expansionary exits (1 slide).
- Three examples of expansionary exits:
 - 1) active monetary policy (6 slides),
 - 2) active monetary policy with one-period information lag (1 slide),
 - 3) passive monetary policy with predetermined inflation (3 slides).

Only One Type of Z

- Assume
 - (a) Spell 1 was a historical aberration.
 - (b) Otherwise all **Z**'s are like Spell 2 (so no anticipation of QQE).
 - (c) No IOR. No need to distinguish between the policy rate and the net policy rate.
- Taken together, if s_t denotes the monetary policy regime,

$$\begin{cases} r_t > 0 \text{ and } m_t = 0 \text{ if } s_t = \mathbf{P}, \\ r_t = 0 \text{ and } m_t > 0 \text{ if } s_t = \mathbf{Z}, \end{cases}$$

where
$$r \equiv$$
 policy rate, $m \equiv \log \left(\frac{\text{actual reserves}}{\text{required reserves}} \right)$.

Dynamics under ${\bf P}$ and ${\bf Z}$

- Additional notation: $p \equiv$ monthly inflation rate, $x \equiv$ output gap.
- The SVAR is about $(s_t, p_t, x_t, r_t, m_t)$.
 - Switches between $(\mathbf{P}, p_t, x_t, r_t, 0)$ and $(\mathbf{Z}, p_t, x_t, 0, m_t)$.
- (super-standard) Dynamics under $s_t = \mathbf{P}$ is block-recursive:

$$\begin{cases} p = \text{const., lagged } p, \text{ lagged } x, \text{ lagged } r + \text{error}, \\ x = \text{const., lagged } p, \text{ lagged } x, \text{ lagged } r + \text{error}, \\ r = \underbrace{\text{const., } \pi, x + v_r}_{\text{''Taylor Rate''}}, \end{cases}$$

where $\pi_t \equiv \frac{1}{12}(p_t + \cdots + p_{t-11})$ is the year-on-year inflation rate.

- Dynamics under **Z**: Just replace "r" by "m" and "v_r" by "v_s".
- The reduced-form coefficients in the p and x equations can differ across regimes.

What Triggers Regime Changes?

• The usual formulation:

$$(\mathsf{ZLB})$$
 $s_t = \begin{cases} \mathsf{P} & \text{if Taylor rate} > 0, \\ \mathsf{Z} & \text{otherwise.} \end{cases}$

- Inappropriate for Japan thanks to BOJ's inflation commitment.
 - (April 1999) "(The Bank of Japan will) continue to supply ample funds until the deflationary concern is dispelled." (then BOJ governor Hayami)
 - (October 2003) "The Bank of Japan is currently committed to maintaining the quantitative easing policy until the CPI (excluding fresh food, on a nationwide basis) registers stably a zero percent or an increase year on year." (BOJ release)
 - (December 2016) "The Bank will continue with 'Quantitative and Qualitative Monetary Easing (QQE) with Yield Curve Control,' aiming to achieve the price stability target of 2 percent, as long as it is necessary for maintaining that target in a stable manner. It will continue expanding the monetary base until the year-on-year rate of increase in the observed CPI (all items less fresh food) exceeds 2 percent and stays above the target in a stable manner."

Regime Evolution with the Exit Condition

• The inflation exit condition means s_t evolves recursively. Replace the ZLB by

$$\begin{cases} \text{If } s_{t-1} = \mathbf{P}, \quad s_t = \begin{cases} \mathbf{P} & \text{if Taylor rate} > 0, \\ \mathbf{Z} & \text{otherwise.} \end{cases} \\ \\ \text{If } s_{t-1} = \mathbf{Z}, \quad s_t = \begin{cases} \mathbf{P} & \text{if Taylor rate} > 0 \text{ and } \pi_t \ge \underbrace{v_t}_{\text{"threshold inflation"}}, \\ \\ \mathbf{Z} & \text{otherwise.} \end{cases} \end{cases}$$

- The central bank:
 - observes (p_t, x_t) and hence π_t .
 - draws three shocks (v_{rt}, v_{st}, v_t).
 - computes the Taylor rate and m_t.
 - ▶ picks st by (1). Then

$$(r_t, m_t) = \begin{cases} (\text{Taylor rate}, 0) & \text{if } s_t = \mathbf{P}, \\ (0, \text{value given by } m_t \text{ equation}) & \text{if } s_t = \mathbf{Z}. \end{cases}$$

(1)

The Effect of Exiting from QE in June 2006

Note: From Figure 4c of Hayashi and Koeda (2018). The 68% probability bands in shades.

Plan for the Rest of My Talk

- Executive summary of the Hayashi-Koeda regime-switching SVAR (4 slides).
- Evidence for expansionary exits (1 slide).
- Theoretical examples of expansionary exits:
 - 1) active monetary policy (6 slides),
 - 2) active monetary policy with one-period information lag (1 slide),
 - 3) passive monetary policy with predetermined inflation (3 slides).

A Toy Model: Fisher and Taylor

• Consists of Fisher and Taylor.

(Fisher)
$$r_t = \rho + E_t(\pi_{t+1}),$$
 (2)
(Taylor) $r_t = \begin{cases} \underbrace{\rho + \pi^* + \phi(\pi_t - \pi^*)}_{\text{Taylor rate}} & \text{if } s_t = \mathbf{P}, \\ 0 & \text{if } s_t = \mathbf{Z}, \end{cases}$ (3)

- The evolution of s_t is (1) with Taylor rate $= \rho + \pi^* + \phi(\pi_t \pi^*)$.
- The target inflation rate π^* vs. the threshold inflation rate v_t .
- The endogenous variables are (s_t, π_t, r_t) . Threshold inflation v_t is the only shock.

regime evolution

Example 1: $\phi > 1$ and (π, r) Simultaneously Determined

• The threshold inflation v_t is a two-state Markov chain. $v > \pi^*$.

v_t v_{t-1}	v (state 0)	π^* (state 1)		
v (state 0)	q	1-q		
π^* (state 1)	0	1		

• Look for Markov equilibria:

$$(s_t, \pi_t, r_t) = \begin{cases} (s^{(0)}, \pi^{(0)}, r^{(0)}) & \text{in state 0, i.e., if } v_t = v \ (>\pi^*), \\ (s^{(1)}, \pi^{(1)}, r^{(1)}) & \text{in state 1, i.e., if } v_t = \pi^*. \end{cases}$$

• An exit time path for a sample path of {*v*_t}:

t	0	1	2	3	4	
Vt		v (> π^*)	v (> π^*)	π^*	π^*	
s _t	Z	Z	Z	Р	Р	
π_t		$-rac{(ho+\pi^*)}{q}\!+\!\pi^*\;(<0)$	$-rac{(ho+\pi^*)}{q}\!+\!\pi^*~(<0)$	π^*	π^*	
rt		0	0	$\rho+\pi^*$	$\rho + \pi^*$	

In the Absorbing State

• In state 1 ($v_t = \pi^*$), the Fisher equation becomes:

(Fisher)
$$r^{(1)} = \rho + \pi^{(1)}$$
. (4)

- Suppose $s_{t-1} = \mathbf{P}$. $t \ge 4$ in the above table.
- The Taylor rule becomes

(Taylor)
$$r^{(1)} = \begin{cases} \underbrace{\rho + \pi^* + \phi(\pi^{(1)} - \pi^*)}_{\text{Taylor rate}} & \text{if Taylor rate} > 0, \\ 0 & \text{otherwise.} \end{cases}$$
(5)

regime evolution

The Peril of the Taylor Rule

- Two equilibria under active monetary policy ($\phi > 1$) (Benhabib *et. al.* (2001)).
- Pick point A: $(\pi^{(1)}, r^{(1)}) = (\pi^*, \rho + \pi^*)$. The targetd-inflation equilibrium.
- Given $s_{t-1} = \mathbf{P}$, $s_t = \mathbf{P}$.

Check the Transition

• The Taylor rule becomes

$$(\text{Taylor}) \qquad r^{(1)} = \begin{cases} \underbrace{\rho + \pi^* + \phi(\pi^{(1)} - \pi^*)}_{\text{Taylor rate}} & \text{if Taylor rate} > 0 \text{ and } \pi^{(1)} > \pi^*, \\ 0 & \text{otherwise.} \end{cases}$$
(6)

The Exit Condition Eliminates the Good Equilibrium

• State 0 ($v_t = v > \pi^*$). Suppose $s_{t-1} = Z$. (Fisher) $r^{(0)} = \rho + q\pi^{(0)} + (1-q)\pi^*$. (7) $(\mathsf{Taylor}) \qquad r^{(0)} = \begin{cases} \underbrace{\rho + \pi^* + \phi(\pi^{(0)} - \pi^*)}_{\mathsf{Taylor \ rate}} & \text{if \ Taylor \ rate} > 0 & \text{and} & \pi^{(0)} \ge v, \\ 0 & \text{otherwise.} \end{cases}$ (8) $r^{(0)}$ Fisher equation Α $\rho + \pi^*$ $\rho + (1-q)\pi^*$ a $\rightarrow \pi^{(0)}$ π* v $-(\rho + \pi^*)/a + \pi^*$

Fumio Hayashi (GRIPS)

Example 2: $\phi > 1$ and π is predetermined

• One-period information lag and predetermined inflation.

t	0	1	2	3	4	
v _t		v (> π^*)	$v~(>\pi^*)$	π^*	π^*	
s _t	z	Z	Z	z	Р	
π_t		$-rac{(ho+\pi^*)}{q}+\pi^*$	$-rac{(ho+\pi^*)}{q}+\pi^*$	$-rac{(ho+\pi^*)}{q}+\pi^*$	π^*	
r _t		0	0	0	$\rho + \pi^*$	
$E_t(\pi_{t+1})$		$-rac{(ho+\pi^*)}{q}+\pi^*$	$-rac{(ho+\pi^*)}{q}+\pi^*$	π^*	π^*	

Example 3: 0 $<\phi<1$ and Predetermined Inflation

• Suggested by Stephanie Schmitt-Grohe. π is predetermined.

(Fisher) $r_t = \rho + \pi_{t+1}$.

- The Taylor rule is the same as in Example 1.
- Taylor & Fisher provides a mapping from (s_{t-1}, π_t) to (s_t, π_{t+1}) .

• Taylor: $(s_{t-1}, \pi_t) \mapsto (s_t, r_t)$, Fisher: $r_t \mapsto \pi_{t+1}$.

• $\{v_t\}$ doesn't have to be a Markov chain with absorbing states.

t	0	1	2	3	4	5	
Vt		π^*	π^*	$v_3 \ (\leq - ho)$	<i>v</i> 4	<i>v</i> 5	
s _t	Z	Z	Z	Р	Р	Р	

• The exit path for a sample path of $\{v_t\}$:

Without the Exit Condition...

• Only one steady state. It is the targeted-inflation equilibrium. It is stable.

The Exit Condition Introduces the Bad Equilibrium

• Taylor rate is positive. Nevertheless regime Z is chosen.

What Happens if Suspend the Exit Condition?

References

- Benhabib, Jess, Stephanie Schmitt-Grohe, and Martin Uribe (2001) "The Perils of Taylor Rules", *JET*.
- Eggertsson, Gauti, and Michael Woodford (2003), "The Zero Lower Bound on Interest Rates and Optimal Monetary Policy", *BPEA*.
- Hagedorn, Marcus (2017), "A Demand Theory of the Price Level", mimeo., University of Oslo.
- Hayashi, F. and J. Koeda (2018), "Exiting from QE", conditionally accept, QE.
- Honda, Yuzo, Yoshihiro Kuroki, and Minoru Tachibana (2007) "An Injection of Base Money at Zero Interest Rates: Empirical Evidence from the Japanese Experience 2001-2006" Osaka University, Discussion Papers in Economics and Bus iness 07-08.
- Honda, Yuzo (2014), "The Effectiveness of Nontraditional Monetary Policy: The Case of Japan". *JER*.
- Schmitt-Grohe, Stephanie, and M. Uribe (2014), "Liquidity Traps: An Interest-Rate-Based Exit Strategy", *Manchester School*.

two findings

Appendix: (Nonlinear) IR Defined

• The IR to an exit in *t*:

$$\mathsf{E}(y_{t+k} \mid s_t = \mathbf{P}, \underbrace{(p_t, x_t, 0, 0)}_{(p, x, r, m) \text{ for date } t}, \dots) - \mathsf{E}(y_{t+k} \mid s_t = \mathbf{Z}, \underbrace{(p_t, x_t, 0, m_t)}_{(p, x, r, m) \text{ for date } t}, \dots), \quad (9)$$

• This can be decomposed into two:

$$9) = \left[\underbrace{\mathsf{E}(y_{t+k} | s_t = \mathbf{P}, (p_t, x_t, 0, 0), ...) - \mathsf{E}(y_{t+k} | s_t = \mathbf{Z}, (p_t, x_t, 0, 0), ...)}_{\text{transitional effect of an exit from } \mathbf{Z} \text{ to } \mathbf{P}} - \left[\underbrace{\mathsf{E}(y_{t+k} | s_t = \mathbf{Z}, (p_t, x_t, 0, m_t), ...) - \mathsf{E}(y_{t+k} | s_t = \mathbf{Z}, (p_t, x_t, 0, 0), ...)}_{\text{the QE effect}} \right].$$
(10)

back to IR graph