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Introduction

Dynamic stochastic general equilibrium (DSGE) models have been
one of the primary tools in macroeconomic analysis.

Microfoundation
Immune to the Lucas Critique
Suitable for welfare analysis
Rational expectations

Following the development of Bayesian estimation techniques,
many economists have estimated DSGE models.

Cross-equation restrictions
Avoid weak-instrument problems that would arise in GMM
estimation.
Priors for structural parameters

Deal with identification issues.
Estimate parameters with bounded domains.
Make the likelihood function well-shaped.
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Introduction

While DSGE models are inherently nonlinear, the nonlinearities
are often small.

Equilibrium conditions are linearly approximated.

Rational expectations solution (policy function) can be obtained
using a standard solution method.

Blanchard and Kahn (1980); Sims (2002)

Likelihood can be evaluated using the Kalman filter.

Additional assumption: Normality of shocks
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Steps for Estimating Linearized DSGE Models
DSGE model:

Γ0(θ)st = Γ1(θ)st−1 + Ψ0(θ)εt + Π0(θ)ηt

Rational expectations solution (state transition equations):

st = Φ1(θ)st−1 + Φε(θ)εt εt ∼ N(0,Σε)

Relation between model variables and data (observation
equations):

yt = Ψ0(θ) + Ψ1(θ)st + ut ut ∼ N(0,Σu)

State transition equations & observation equations⇒ Kalman filter
⇒ Likelihood function: L(θ|Y )

Prior distribution: p(θ)
Bayes’ Theorem⇒ Posterior distribution

p (θ|Y ) ∝ L(θ|Y )p (θ)
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Needs for Nonlinear DSGE models

However, linearized DSGE models cannot deal with features that
generate pronounced nonlinearities:

Occasionally binding constraints
Stochastic volatilities
Markov switching coefficients
Asymmetric adjustment costs

Nonlinear solution and estimation methods are required.
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Session Plan

1 Sunakawa: How to solve nonlinear DSGE models

2 Hirose: How to estimate nonlinear DSGE models

A survey paper will be published in Japanese Economic Review.
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1. How to solve

nonlinear DSGE models
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Plan for the first part

What is the time iteration method?

Time iteration is a method to solve the Collman (1990) operator.

Applications to New Keynesian models

Need to deal with the curse of dimensionality.

Smolyak’s method with sparse grid points (Fernández-Villaverde et
al., 2015)

Simulation-based method with EDS grid (Maliar and Maliar, 2015)

MATLAB codes available at https://github.com/tkksnk/NKZLB
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Time iteration in the New Keynesian literature

Time iteration is a popular method to solve nonlinear New
Keynesian models.

We have to look at the decentralized economy, as the second
welfare theorem fails to hold.

An incomplete list includes: Fernández-Villaverde, Gordon,
Guerrón-Quintana, and Rubio-Ramírez, 2015; Maliar and Maliar,
2015; Gavin, Keen, Richter, and Throckmorton, 2015; Gust, Herbst,
López-Salido, and Smith, 2017; Iiboshi, Ueda, and Shintani, 2018;
Nakata, 2016a, 2016b; Hills, Nakata, and Schmitt, 2016; Dennis,
2016; Ngo, 2014; Hirose and Sunakawa, 2015, 2017; Hills, Nakata,
and Sunakawa, 2018.
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Why faster methods?

When we estimate the model with Bayesian methods (Markov
chain Monte Carlo), we solve the model 50,000-200,000 times.

If it takes 1000 seconds to solve the model once, estimating the
model takes 1000× 50000/(60× 60× 24) = 578.7 days.

If it takes 4 seconds to solve the model once, estimating the model
takes 4× 50000/(60× 60× 24) = 2.3 days.
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What is the time iteration method?

Neoclassical growth model

Univariate Interpolation for k

Nonlinear optimization (or how to avoid it)

Stochastic neoclassical growth model

Multivariate interpolation for (k, z)

Nonlinear optimization (or how to avoid it)

Numerical integration (or how to avoid it)
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Neoclassical growth model

We consider an example of neoclassical growth model. An
individual maximizes life-time utility

∞∑
t=0

βtu(ct)

subject to
ct + kt+1 ≤ f(kt).

where u(· ) and f(· ) satisfy standard conditions.

The first-order necessary condition is given by

uc(ct) = βuc(ct+1)fk(kt+1)

where uc(· ) denotes the derivative of u wrt c and fk(· ) denotes
the derivative of f wrt k.
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Collman operator

There is a mapping σ = Kσ that solves

uc(c) = βuc (σ(f(k)− c)) fk(f(k)− c)

for c = σ(k). σ is called policy function.

Note that k′ = f(k)− c and c′ = σ(k′) = σ(f(k)− c).

Bellman operator

V (k) = max
c∈(0,f(k)]

{u(c) + βV (f(k)− c)} .

is to solve the Bellman equation, whereas the Collman operator is
helpful to solve the Euler equation.
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Collman operator, cont’d

Collman (1990) proves the existence of the fixed point of K in a
stochastic neoclassical growth model with distortionary tax.

Greenwood and Huffman (1995) extend it to several cases. Also
see Richter, Throckmorton and Walker (2014) and Sargent and
Stachurski (2018).
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Time iteration: Algorithm

Time iteration is a method to solve the Collman operator.

The time iteration method takes the following steps:

1 Make an initial guess for the policy function σ(0).

2 Given the policy function previously obtained σ(i−1) (i is an index for
the number of iteration), solve

uc(c) = βuc

(
σ(i−1)(f(k)− c)

)
fk(f(k)− c)

for c.

3 Update the policy function by setting c = σ(i)(k).

4 Repeat 2-3 until L∞ norm
∥∥σ(i) − σ(i−1)

∥∥ is small enough.
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Optimization and interpolation

We discretize the state space of k by grid points:

kj ∈ {k1, k2, · · · , kN},

where j is an index for grid points.

Then, given σ(i−1), we solve

R̃(c; kj , σ
(i−1)) ≡ −uc(c)+βuc

(
σ(i−1)(f(kj)− c)

)
fk(f(kj)−c) = 0

for c at each grid point kj . That is, the residual function is equal to
zero at each grid point. This is called collocation.

We need to know the value of σ(i−1)(f(kj)− c), which may be off
the grid points.
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Optimization and interpolation, cont’d

More generally, we want to:

solve f(x) = 0 for x (optimization),

when we know only the values of f(xj) at xj ∈ {x1, ..., xN}
(interpolation).
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Polynomial function

The policy functions are approximated by a higher-order
polynomial function

σ̂(x;θ) = θ0 + θ1x+ θ2x
2 + · · ·+ θN−1x

N−1.

We need to know the values of σ(x) Ñ ≥ N grid points to fit the
polynomial. Hereafter, we consider the case of Ñ = N .

Fitting ordinal polynominals may have muliticollinearity problem.
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Chebyshev polynomial

We define the basis functions T (x) : [−1, 1]→ [−1, 1], and have
an univariate polynomial

σ̂(x;θ) = θ0 + θ1T1(x) + θ2T2(x) + · · ·+ θN−1TN−1(x).

An example of T (x):

T0(x) = 1,

T1(x) = x,

T2(x) = 2x2 − 1,

...

Tn(x) = 2xTn−1(x)− Tn−2(x).

where x ∈ [−1, 1]. These are called Chebyshev polynomials, or
Chebyshev basis functions.

19 / 85



Chebyshev collocation points

The polynomial is evaluated at the collocation points

Chebyshev zeros:

xj = cos

(
(2j + 1)π

2(N − 1)

)
for j = 0, 1, ..., N − 1.

Chebyshev extrema:

xj = cos

(
jπ

N − 1

)
for j = 0, 1, ..., N − 1.
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Transforming grid points

For a general function which takes a value kj ∈ [k1, kN ] at each
grid point, we have to transform kj to xj ∈ [−1, 1] to (or xj to kj)
by applying

xj =ϕ(kj) =
2(kj − k1)

kN − k1
− 1,

or

kj =ϕ−1(xj) = k1 + 0.5(1 + xj)(kN − k1).
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Fitting polynomial

Once we have the collocation points {xj} and the function values
{σ(xj)} evaluated at xj for j = 1, 2, ..., N , we can fit σ̂(x; θ) to the
data to obtain θ.
σ(x1)
σ(x2)

σ(xN )

 =


1 T1(x1) T2(x1) TN−1(x1)
1 T1(x2) T2(x2) TN−1(x2)

1 T1(xN ) T2(x1) TN−1(xN )




θ0

θ1

θN−1

 ,
or

σ(x) = T (x)θ.

Then we have θ = T (x)−1σ(x). T (x) needs to be nonsingular.

The basis functions with Chebyshev zeros/extrema satisfy
orthogonality property. That is, each column of T (x) is
uncorrelated to each other.
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Example: 1/(1 + x2) with N = 9
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Nonlinear optimization

Given σ̂(i−1)(k;θ) = T (ϕ(k))θ, we solve a nonlinear equation

R̃(c; kj , σ̂
(i−1)) ≈ −uc(c)+βuc

(
σ̂(i−1)(f(kj)− c;θ)

)
fk(f(kj)−c) = 0

for c at each grid point kj .

We use Newton’s method to solve the nonlinear equation. For
example, Matlab’s command fsolve or Chris Sims’ csolve does
such a job.

But, such a nonlinear optimization can be costly when the number
of grid points and/or the number of nonlinear equations is large.
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Parameterized expectation

By applying a version of the parameterized expectation algorithm
(PEA), we can avoid solving nonlinear equations (Maliar and
Maliar, 2015; Gust et al., 2017, Hirose and Sunakawa, 2015;
2017).

Marcet (1988) uses a stochastic approach based on Monte Carlo
simulations.

Christiano and Fisher (2000) propose a non-stochastic approach
called PEA collocation.

Endogenous grid-point method (EGM) is another popular method to
avoid nonlinear optimization.
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PEA collocation

There are two ways for applying PEA collocation (Christiano and
Fisher, 2000):

One is to fit polynomials to future variables.

The other is to fit polynomials to current variables.
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Fitting future variables

We define
e(k) ≡ βuc

(
c′
)
fk(k

′).

Then, given the values of e(i−1)(kj) at each grid point, we have

c = u−1
c (e(i−1)(kj)),

k′ = f(kj)− c,

and an intermediate policy function c = σ(i)(kj). Note that we
don’t have to solve the nonlinear equation here.
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Fitting future variables, cont’d

We also update

e(i)(kj) = βuc

(
σ(i)(k′)

)
fk(k

′)

where k′ is obtained in the previous step.

Note that c′ = σ(i)(k′), or equivalently e(i−1)(k′), needs to be
interpolated here. That is,

c′ =σ(i)(k′)

≈u−1c (ê(i−1)(k′;θ))

where ê(i−1)(k;θ) = θ0 + θ1T1(k) + θ2T2(k) + · · ·+ θN−1TN−1(k).
θ is obtained by fitting the polynomial to the data of future variables
e(i−1)(kj) at each grid point kj .
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Fitting current variables
Or, we define

v(k) ≡ βuc (c) fk(k),

Then, given the function v(i−1)(k), we have

c = u−1
c (v(i−1)(k′)),

≈ u−1
c (v̂(i−1)(f(kj)− c;θ))

Note that v(i−1)(k) needs to be interpolated by using its
approximation v̂(i−1)(k;θ). θ is obtained by fitting the polynominal
to the data of current variables v(i−1)(kj) at each grid point kj .

We can use a successive approximation c = σ(i−1)(kj) to avoid
nonlinear optimization.

We also update

v(i)(kj) = βuc (c) fk(kj),

where c is obtained in the previous step.
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What is the time iteration method?

Neoclassical growth model

Univariate Interpolation k

Nonlinear optimization (or how to avoid it)

Stochastic neoclassical growth model

Multivariate interpolation (k, z)

Nonlinear optimization (or how to avoid it)

Numerical integration (or how to avoid it)

30 / 85



Stochastic neoclassical growth model

Now we extend the earlier example with stochastic technology. An
individual maximizes expected life-time utility

E0

∞∑
t=0

βtu(ct)

subject to
ct + kt+1 ≤ f(kt, zt).

E0 is expectation operator at time 0.

zt follows an AR(1) process

zt+1 = ρzt + εt+1, εt+1 ∼ N(0, σ2
ε )
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Collman operator

The first-order necessary condition is given by

uc(ct) = βEt {uc(ct+1)fk(kt+1, zt+1)} .

There is a mapping σ = Kσ that solves

uc(c) = β

∫
uc
(
σ(f(k, z)− c, z′)

)
fk(f(k, z)− c, z′)p(z′|z)dz′

for c = σ(k, z).
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Time iteration

The time iteration method takes the following steps:

1 Make an initial guess for the policy function σ(0).

2 Given the policy function previously obtained σ(i−1), solve

uc(c) = β

∫
uc

(
σ(i−1)(f(k, z)− c, z′)

)
fk(f(k, z)−c, z′)p(z′|z)dz′

for c.

3 Update the policy function by setting c = σ(i)(k, z).

4 Repeat 2-3 until
∥∥σ(i) − σ(i−1)

∥∥ is small enough.
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Optimization, interpolation and integration

We discretize the state space of (k, z) by grid points:

kj ∈ {k1, k2, · · · , kNk}, zm ∈ {z1, z2, · · · , zNz},

where (j,m) is an index for the set of grid points.

Then, given σ(i−1), we solve

R̃(c; kj , zm, σ
(i−1))

≈− uc(c)

+β

∫ [
uc

(
σ(i−1)(f(kj , zm)− c, z′)

)
fk(f(kj , zm)− c, z′)p(z′|zm)

]
dz′

=0

for c at each grid point (kj , zm) (optimization).
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Optimization, interpolation and integration, cont’d

We need to know the value of σ(i−1)(f(kj , zm)− c, z′), which may
be off the grid points (interpolation).

σ(k, z) is a two-dimensional object, which can be approximated by
two-dimensional Chebyshev polynomial.

Also, we compute an integral with regard to z′ for the next period’s
expectation (integration).
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2-D Chebyshev polynomial

The policy functions are approximated by basis functions. For
example, if Nx = Ny = 3,

σ̂(x, y;θ) = θ0,0 + θ1,0T1(x) + θ2,0T2(x) + θ0,1T1(y) + θ0,2T2(y)

+ θ1,1T1(x)T1(y) + θ1,2T1(x)T2(y)

+ θ2,1T2(x)T1(y) + θ2,2T2(x)T2(y)

There are 9 coefficients, so we need at least N = NxNy = 9
collocation points.

Chebyshev extrema is used as collocation points

(x, y) ∈{(0, 0), (−1, 0), (1, 0), (0,−1), (0, 1),

(−1,−1), (1,−1), (−1, 1), (1, 1)}.
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Fitting 2-D Chebyshev polynomial

Once we have the collocation points {xi, yj} and the function
values {σ(xi, yj)} evaluated at (xi, yj) for i = 1, 2, ..., Nx and
j = 1, 2, ..., Ny, we can fit σ̂(x, y;θ) to the data to obtain θ.

For example, if Nx = Ny = 2,
σ(x1, y1)
σ(x2, y1)
σ(x1, y2)
σ(x2, y2)

 =


1 T1(x1) T1(y1) T1(x1)T1(y1)
1 T1(x2) T1(y1) T1(x2)T1(y1)
1 T1(x1) T1(y2) T1(x1)T1(y2)
1 T1(x2) T1(y2) T1(x2)T1(y2)



θ0,0

θ1,0

θ1,0

θ1,1


or σ(x,y) = T (x,y)θ. Then we have θ = T (x,y)−1σ(x,y).

More generally, we have a tensor product for
T (x,y) = T (x)⊗ T (y). The total number of grid points is
exponentially increasing in the number of varialbles.
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Approximating stochastic process

How to compute an integral with regard to z′?

Tauchen’s method (Rouwenhorst’s method): AR(1) process is
approximated by a Markov chain.

Gaussian Quadrature: The quadrature nodes {xi}Mi=1 and
quadrature weights {wi}Mi=1 approximate∫

f(x)w(x)dx ≈
∑

wif(xi).

The total number of quadrature points is exponentially increasing
in the number of exogeneous varialbles.
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PEA collocation

There are two ways for applying PEA collocation (Christiano and
Fisher, 2000):

One is to fit polynomials to future variables.

The other is to fit polynomials to current variables.

In the latter approach, we can also avoid computing numerical
integration in the expectation terms by precomputation technique of
Judd, Maliar, Maliar and Tsener (2017).
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Numerical examples I

Solve the stochastic neoclassical model by the time iteration
method

Interpolation: Chebyshev polynomial (either Nd = 3 or 5 for each
d ∈ {k, z}).

Optimization:

Chris Sims’ csolve is used in Time iteration with Newton’s method
(TI).

No optimization is required in PEA collocation.

Integration:

Gaussian-Hermite quadrature is used in TI and PEA collocation with
fitting future variables (future PEA).

Precomputation technique in Judd et al. (2017) is used in PEA
collocation with fitting current variables (current PEA).
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Euler equation errors

Accuracy and computation speed are compared. Look at the Euler
equation errors:

E(k, z) ≡ 1−β
∫ {(

σc(k
′, z′)

σc(k, z)

)−τ (
1− δ + αz′k′α−1

)}
p(z′|z)dz′

where k′ = f(k, z)− σc(k, z).
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Summary

(Nd, τ) TI future PEA current PEA
L1 L∞ CPU L1 L∞ CPU L1 L∞ CPU

(3, 1.0) -5.12 -4.60 4.03 -4.23 -3.69 0.04 -3.13 -2.44 0.02
(5, 1.0) -7.08 -6.72 9.76 -5.92 -5.59 0.09 -3.13 -2.44 0.04
(3, 2.0) -4.82 -4.35 0.86 -3.99 -3.53 0.03 -2.95 -2.26 0.01
(5, 2.0) -6.76 -6.45 2.88 -5.63 -5.36 0.11 -2.96 -2.27 0.04
(3, 5.0) -4.48 -3.87 0.62 -3.57 -2.88 0.05 -2.67 -1.99 0.02
(5, 5.0) -6.43 -5.38 1.91 -5.10 -3.90 0.15 -2.69 -2.00 0.05

Notes: L1 and L∞ are, respectively, the average and maximum of absolute Euler
errors (in log 10 units) on a 10,000 period stochastic simulation. CPU is the
elapsed time for computing equilibrium (in seconds).



Applications to New Keynesian models

We solve small-scale nonlinear New Keynesian DSGE model with

Smolyak’s method with sparse grid points

Simulation-based method with EDS grid (if have time)

The techniques we mentioned earlier (PEA collocation and
precomputing integrals) are also applied.
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A small scale New Keynesian DSGE model

The example here is taken from An and Schorfheide (2007) and
Herbst and Schorfheide (2015).

The model economy consists of

Final-good and intermediate-good producing firms

Households

Monetary and fiscal authorities

Prices are sticky due to Rotemberg-type (1982) adjustment cost.
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Model overview
Equilibrium conditions (after detrending):

1 = βEt

[(
ct+1

ct

)−τ
Rt

γt+1πt+1

]

0 = (1− ν−1) + ν−1χHc
τ
t − φ (πt − π̄)

[
πt −

1

2ν
(πt − π̄)

]
+ βφEt

[(
ct+1

ct

)−τ
yt+1

yt
(πt+1 − π̄)πt+1

]
,

R∗t =

(
rπ̄
(π
π̄

)ψ1
(
yt
y∗t

)ψ2
)1−ρR

R∗ρRt−1e
εR,t ,

ct +
φ

2
(πt − π)

2
yt = g−1t yt,

Rt = max {R∗t , 1} .

There are 5 equations and 5 endogenous variables {ct, πt, R∗t , Rt, yt}
and 3 exogenous variables {γt, gt, εR,t}. The natural level of output is
given by y∗t = (1− ν)1/τgt.
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Model overview, cont’d

The solution has a form of

c = σc(R
∗
−1, s), π = σπ(R∗−1, s),

R∗ = σR∗(R
∗
−1, s), y = σy(R

∗
−1, s),

where s = (γ, g, εR). Note that R = max{σR∗(R∗−1, s), 1}.

46 / 85



Collman operator

The mapping σ = Kσ solves

0 = −c−τ + βR

∫ [
σc(R, s

′)−τ

γ′σπ(R, s′)

]
p(s′|s)ds′,

0 =

(
(1− ν−1) + ν−1cτ − φ (π − π̄)

[
π − 1

2ν
(π − π̄)

])
c−τy

+ βφ

∫ [
σc(R, s

′)−τσy(R, s′) (σπ(R, s′)− π̄)σπ(R, s′)
]
p(s′|s)ds′,

R =

(
rπ̄
(π
π̄

)ψ1
(
y

y∗

)ψ2
)1−ρR

RρR−1e
εR ,

c+
φ

2
(π − π̄)

2
y = g−1y.

R = max {R∗, 1} ,

for c, π,R∗, R, y.
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Time iteration

The time iteration method takes the following steps:

1 Make an initial guess for the policy function σ(0).

2 Given the policy function previously obtained σ(i−1), solve the
relevant equations for (c, π,R∗, y).

3 Update the policy function by setting c = σ
(i)
c (R∗−1, s),

π = σ
(i)
π (R∗−1, s), R

∗ = σ
(i)
R∗(R∗−1, s), and y = σ

(i)
y (R∗−1, s).

4 Repeat 2-3 until
∥∥σ(i) − σ(i−1)

∥∥ is small enough.
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Optimization, interpolation, and integration
Here, we need to solve the system of nonlinear equations
(optimization).

PEA collocation can also be used here to avoid costly nonlinear
optimization.

Also, we need to evaluate the function σ(R∗, s′) off the grid points
(interpolation).

σ(R∗−1, s) is a high dimensional object (our model have 4 state
variables, (R∗−1, s) = (R∗−1, γ, g, εR)), which can be dealt with
Smolyak’s method with sparse grid points or simulation based
method with EDS grid.

We compute an integral wrt s′ for the next period’s expectation
(integration).

Precomputing integrals can also be applied here to avoid numerical
integration.
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Smolyak’s method

We introduce Smolyak’s (1963) method with sparse grid points to
handle such a high-dimensional object.

Krueger and Kubler (2004) first introduced Smolyak sparse grid
points to solve heterogeneous OLG models with aggregate
uncertainty.

Applications of Smolyak’s method to New Keynesian models are
found in Fernández-Villaverde et al. (2015), Gust et al. (2017),
Hirose and Sunakawa (2015; 2017).

We look at simple cases with second-order polynomials with
Nd = 3 for each dimension.

Cases with higher-order polynomials (for example Nd = 5 or 9) are
a bit more complicated but manageable. See Judd, Maliar, Maliar
and Valero (2014).
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Smolyak’s method: Simple cases

The policy functions are approximated by basis functions. For
example, if we use second-order polynomials and Nx = Ny = 3,

σ̂(x, y;θ) = θ0,0 + θ1,0T1(x) + θ2,0T2(x) + θ0,1T1(y) + θ0,2T2(y).

There are 5 coefficients, so we need 5 collocation points. We have
just eliminated all the cross terms!
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Simple cases with second-order polynomials

Chebyshev extrema is used as collocation points:

Nd = 2 : (x, y) ∈ {(0, 0), (1, 0), (−1, 0), (0, 1), (0,−1)}

Nd = 3 : (x, y, z) ∈ {(0, 0, 0), (1, 0, 0), (−1, 0, 0),
(0, 1, 0), (0,−1, 0), (0, 0, 1), (0, 0,−1)}

-1 0 1

-1

0

1

-1

11

0

1

00

-1-1



Smolyak’s method: Simple cases, cont’d

The total number of the grid points is 1 + 2Nd, whereas it is 3Nd

with the standard Chebyshev polynomials.

Nd 1 + 2Nd 3Nd

2 5 9
3 7 27
4 9 81
5 11 243
...

...
...

10 21 59,049
20 41 3,486,784,401
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Numerical examples II
Solve the nonlinear NK model by the time iteration method

Interpolation:

Non-stochastic method: Chebyshev polynomial with Smolyak sparse
grid points (in the latter two). (Nd, N) = (3, 81), (3, 9), (5, 41).

Simulation-based method: Second-order polynomials with cross
terms. The number of grid points N = 25, 50 or 100 EDS grid points.
As we have 4 state variables, the number of coefficients is 15.

Optimization:

Chris Sims’ csolve is used in Time iteration with Newton’s method
(TI).

No optimization is required in PEA collocation.

Integration:

Gaussian-Hermite quadrature is used with M = 33 = 27 in TI and
PEA collocation with fitting future variables (future PEA).

Precomputation technique in Judd et al. (2017) is used in PEA
collocation with fitting current variables (current PEA, only with
non-stochastic method).
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Non-stochastic method with ZLB
(Nd, N) TI

L1,c L1,π L∞,c L∞,π σ∆y σπ σR PrZLB CPU
(3, 81) -3.73 -2.62 -2.07 -1.42 0.76 2.05 2.53 1.53 1127.3
(3, 9) -3.40 -2.38 -2.06 -1.09 0.76 2.02 2.50 1.79 12.98
(5, 41) -3.97 -3.14 -2.07 -1.73 0.76 2.04 2.50 1.40 270.65

(Nd, N) future PEA
L1,c L1,π L∞,c L∞,π σ∆y σπ σR PrZLB CPU

(3, 81) -3.73 -2.67 -2.08 -1.44 0.76 2.11 2.59 1.71 82.28
(3, 9) -3.26 -2.66 -1.92 -1.48 0.76 2.19 2.68 3.42 0.96
(5, 41) -4.04 -3.54 -2.13 -1.49 0.76 2.03 2.48 1.18 14.66

(Nd, N) current PEA
L1,c L1,π L∞,c L∞,π σ∆y σπ σR PrZLB CPU

(3, 81) -4.05 -2.71 -2.12 -1.53 0.76 2.01 2.45 1.03 4.05
(3, 9) -3.35 -2.42 -1.97 -1.25 0.76 2.01 2.47 1.92 0.19
(5, 41) -4.17 -2.95 -2.12 -1.44 0.76 2.03 2.47 1.07 0.99

Notes: L1,c, L1,π , L∞,c, and L∞,π are, respectively, the average and maximum
of absolute Euler errors (in log 10 units) on a 10,000 period stochastic simulation.
CPU is the elapsed time for computing equilibrium (in seconds). σ∆y , σπ , and σR
are the standard deviation of output growth, inflation, and the policy rate. PrZLB is
the probability of binding the ZLB (in percent).



Simulation-based method

We solve for the policy functions on simulated grid points based on
ergodic distribution of the state variables.

Judd, Maliar and Maliar (2011) and Maliar and Maliar (2015, MM
hereafter) developed simulation-based method, based on the
original work of Marcet’s (1988) parameterized expectation
algorithm.

Applications to New Keynesian models are found in Maliar and
Maliar (2015), Lepetuyk, Maliar, and Maliar (2017), Aruoba,
Cuba-borda, and Schorfheide (2018), and Hills, Nakata, and
Sunakawa (2018).
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Constructing EDS grid

In constructing an epsilon-distinguishable-set (EDS) grid from the
ergodic set, we do the following two step procedure (See MM for
more details):

1 Selecting points within an essentially ergodic set (called Algorithm
Aη in MM)

2 Constructing a uniformly spaced set of points that covers the
essentially ergodic set (called Algorithm P ε in MM)
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Constructing EDS grid
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Simulation-based method with ZLB

N TI
L1,c L1,π L∞,c L∞,π σ∆y σπ σR PrZLB CPU

25 -3.39 -2.93 -2.21 -1.66 0.77 2.14 2.63 1.21 44.41
50 -3.00 -2.56 -1.83 -1.48 0.77 2.21 2.71 1.92 65.37
100 -3.28 -2.80 -2.08 -1.69 0.76 2.10 2.57 1.25 106.17

N future PEA
L1,c L1,π L∞,c L∞,π σ∆y σπ σR PrZLB CPU

25 -2.44 -1.24 -1.58 -0.61 0.77 2.18 2.68 1.31 3.37
50 -2.44 -1.24 -1.69 -0.63 0.77 2.15 2.63 1.46 5.08
100 -2.46 -1.26 -1.71 -0.67 0.76 2.11 2.58 1.31 7.93

Notes: L1,c, L1,π , L∞,c, and L∞,π are, respectively, the average and maximum
of absolute Euler errors (in log 10 units) on a 10,000 period stochastic simulation.
CPU is the elapsed time for computing equilibrium (in seconds). σ∆y , σπ , and σR
are the standard deviation of output growth, inflation, and the policy rate. PrZLB is
the probability of binding the ZLB (in percent).



Parameter values

Parameter Value
ν Inverse of demand elasticity 1/6
ḡ Steady state government expenditure 1.25
γ Steady state technology growth 1.0052
β Discount factor 0.9990
π̄ Steady state inflation 1.0083
τ CRRA parameter 2.83
φ Price adjustment cost 17.85
ψ1 Interest rate elasticity to inflation 1.80
ψ2 Interest rate elasticity to output gap 0.63
ρr Interest rate smoothing 0.77
ρg Persistence of government shock 0.98
ρz Persistence of technology growth shock 0.88
σr Std. dev. of monetary policy shock 0.0022
σg Std. dev. of government shock 0.0071
σz Std. dev. of technology growth shock 0.0031

Notes: Taken from Schorfheide and Herbst (2015). The observations used in the
estimation range from 1983:I to 2002:IV, giving us a total of T = 80 observations.
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index-function approach for the ZLB

To deal with the ZLB, we adapt an index-function approach as in Aruoba
et al. (2017), Gust et al. (2017), Nakata (2017), Hirose and Sunakawa
(2017).

Given σNZLB and σZLB, use an index function to have

σc(R
∗
−1, sm) = I(R∗>1)σc,NZLB(R∗−1, sm) +

(
1− I(R∗>1)

)
σc,ZLB(R∗−1, sm),

σπ(R∗−1, sm) = I(R∗>1)σπ,NZLB(R∗−1, sm) +
(
1− I(R∗>1)

)
σπ,ZLB(R∗−1, sm),

where

I(R∗>0) =

{
1 when R∗ = σR∗,NZLB(R∗−1, sm) > 1,

0 otherwise.

σNZLB(R∗−1, sm) is the policy function assuming that ZLB always does not
bind and σZLB(R∗−1, sm) is the policy function assuming that ZLB always
binds.
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2. How to estimate

nonlinear DSGE models
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State-Space Representation

Linear case
1 State transition equations:

st = Φ1(θ)st−1 + Φε(θ)εt, εt ∼ N(0,Σε)

2 Observation equations:

yt = Ψ0(θ) + Ψ1(θ)st + ut, ut ∼ N(0,Σu)

Nonlinear case
1 State transition equations:

st = Φ(st−1, εt; θ), εt ∼ Fε(·; θ)

2 Observation equations:

yt = Ψ(st; θ) + ut, ut ∼ Fu(·; θ)
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Kalman Filter
In a linear case, the Kalman filter is available to evaluate likelihood.
Distributional assumption about the initial state s0:

s0 ∼ N(s̄0|0, P0|0)

It is common to set s̄0|0 and P0|0 equal to the unconditional first and
second moments of implied by the law of motion of st.

Given s̄0|0 and P0|0, the one-period-ahead forecasts of these
moments are

s̄1|0 = Φ1s̄0|0,

P1|0 = Φ1P0|0Φ′1 + ΦεΣεΦ
′
ε.

Given s̄1|0 and P1|0, the conditional mean and variances of the
observables y1 are

ȳ1|0 = A+Bs̄1|0,

F1|0 = BP1|0B
′.
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Then, the forecast error of the observables y1 is

ν1|0 = y1 − ȳ1|0.

It has been known that the optimal updating leads to

s̄1|1 = s̄1|0 + P1|0B
′F−1

1|0 ν1|0,

P1|1 = P1|0 − P1|0B
′F−1

1|0BP1|0,

where s̄1|1 and P1|1 are the mean and variances of s1 conditional
on y1.

In the same way as above, given s̄1|1 and P1|1, we can obtain s̄2|1,
P2|1, ȳ2|1, F2|1, and ν2|1.

Also, updating gives s̄2|2 and P2|2, conditional on {y1, y2}.

Repeating these steps yields the sequences of s̄t|t−1, Pt|t−1,
ȳt|t−1, Ft|t−1, and νt|t−1 conditional on {y1, y2, ..., yt−1} for
t = 1, 2, ...T .
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Since εt ∼ N(0,Σε),

yt|Y t−1 ∼ N
(
A+Bŝt|t−1, Ft|t−1

)
,

where Y t−1 = {y1, y2, ..., yt−1}.
Its probability density function is

p
(
yt|Y t−1

)
= (2π)−

n
2

∣∣Ft|t−1

∣∣− 1
2 exp

(
−1

2
ν ′t|t−1F

−1
t|t−1νt|t−1

)
.

Therefore, the log-likelihood is given by

lnL(θ|Y ) =

T∑
t=1

ln p
(
yt|Y t−1

)
= −nT

2
ln 2π − 1

2

T∑
t=1

ln
∣∣Ft|t−1

∣∣− 1

2

T∑
t=1

ν ′t|t−1F
−1
t|t−1νt|t−1.
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Particle Filter

In a nonlinear case, the Kalman filter is NOT available because the
distribution of yt|Y t−1 is non-normal.

A particle filter can approximate the likelihood function.

While there are many particle filters, we will focus on the bootstrap
particle filter.

Gordon, Salmond, and Smith (1993)
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Bootstrap Particle Filter

Idea: Particles representing st are propagated according to state
space representation, so that the distribution of yt|Y t−1 can be
approximated.

Draw the initial particles {sj0}Mj=1 from the distribution:

sj0 ∼ N(s̄0, P0).

M denotes the number of particles.
Set s̄ and P equal to the unconditional first and second moments of
implied by the law of motion of st.
Set particle weights W j

0 = 1, for j = 1, ...,M .

68 / 85



For t = 1, ..., T :
1 Draw shocks in period t:

εjt ∼ Fε(·; θ),
and propagate particles {sjt−1} using the state-transition equation,

s̃jt = Φ(sjt−1, εt; θ).

2 Define the incremental weights:

w̃jt = p(yt|s̃jt , θ).

The predictive density p(yt|Y1:t−1, θ) can be approximated by

p̂(yt|Y1:t−1, θ) =
1

M

M∑
j=1

w̃jtW
j
t−1.

If the measurement errors ut ∼ N(0,Σu), then the incremental
weights are evaluated as

w̃jt = (2π)−
n
2 |Σu|−

1
2 exp

{
−1

2
(yt −Ψ(s̃jt ; θ))

′Σ−1
u (yt −Ψ(s̃jt ; θ))

}
,

where n denotes the number of observables.
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3 Define the normalized weights:

W̃ j
t =

w̃jtW
j
t−1

1
M

∑M
j=1 w̃

j
tW

j
t−1

An approximation of E[st|Y1:t, θ] is given by

Ê[st|Y1:t, θ] =
1

M

M∑
j=1

s̃jtW̃
j
t .

4 If resampling is needed, M iid draws {sjt}Mj=1 from a multinomial

distribution characterized by support points and weights {s̃jt , W̃
j
t }

and set W j
t = 1, for j = 1, ...,M .

If resampling is not needed, let sjt = s̃jt and W j
t = W̃ j

t for
j = 1, ...,M .

5 Repeat steps 1–4 for next t.
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Resampling

A resampling step is necessary to avoid the degeneracy of the
distribution of particle weights.

A situation in which all but a few of the weights are near zero

Since resampling is done with replacement, a particle with a large
weight is likely to be drawn many times and particles with small
weights are not likely to be drawn at all.

Resampling effectively deals with the degeneracy problem by
eliminating the particles with very small weights.

Resampling is done whenever the effective sample size

ÊSSt =
M

1
M

∑M
j=1(W̃ j

t )2

falls below a threshold, e.g., M/2.
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Likelihood Approximation

Repeating steps 1–4 for t = 1, ..., T gives particle weights
{w̃jt ,W

j
t−1}Mj=1 for each t.

The approximation of the log-likelihood function is given by

ln p̂(Y1:T |θ) =

T∑
t=1

ln

 1

M

M∑
j=1

w̃jtW
j
t−1

 .
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Central Difference Kalman Filter

Likelihood approximation using a particle filter causes a huge
computational cost.

If a DSGE model is approximated by a 2nd- or 3rd-order
perturbation method, the Central Difference Kalman Filter (CDFK)
can approximate the likelihood more efficiently.

Andreasen (2013)

Idea: Approximate the filtering equations that compute and update
first and second moments of state variables by 2nd-order
multivariate Stirling interpolations.

Andreasen (2013) show that a quasi maximum likelihood estimator
based on the CDFK can be consistent and asymptotically normal
for DSGE models solved up to third order.
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Bayesian Estimation

Once we approximate and evaluate the likelihood function p̂(Y |θ),
the Bayesian likelihood approach is applicable.

Prior distribution: p(θ)
Bayes’ Theorem⇒ Posterior distribution

p̂ (θ|Y ) ∝ p̂(Y |θ)p (θ)

Generate draws from the posterior distribution using Markov Chain
Monte Carlo (MCMC) algorithm.

Random-Walk Metropolis Hasting (RWMH) algorithm is widely used.
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Sequential Monte Carlo Algorithm

Issues in the RWMH algorithm:

The posterior distribution is possibly multimodal.
The RWMH algorithm can get stuck near a local mode and fail to
find the entire posterior distribution.
It is often very difficult to find a model.

Herbst and Schorfheide (2014, 2015) propose the Sequential
Monte Carlo (SMC) algorithm.

Particles representing θ are propagated, similar to a particle filter.
Overcome the issues by building a particle approximation to the
posterior gradually through tempering the likelihood function.
Sequence of tempered posteriors:

πn(θ) =
[p(Y |θ)]φnp(θ)∫
[p(Y |θ)]φnp(θ)dθ

, n = 0, ..., Nφ.

Tempering schedule: φn = (n/Nφ)
χ

75 / 85



Parallelization

Both the particle filter and the SMC algorithm can be parallelized.

Nonlinear solution methods can be also parallelized.
Massive speed gains in estimation

Matlab parallel toolbox is very easy to use, but not so fast.

Explicit parallelization:

OpenMP
MPI
GPU programming: CUDA and OpenCL

Hardware:

Workstation with multi-core and multi-processors
Computer cluster
Cloud computing
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Faster Programming Languages

Aruoba and Fernández-Villaverde (2015): “A Comparison of
Programming Languages in Macroeconomics,” Journal of
Economic Dynamics and Control, 58, 265–273.

Solve the stochastic neoclassical growth model using C++, Fortran,
Java, Julia, Python, Matlab, Mathematica, and R.
Report the execution time of the codes.

Aruoba and Fernández-Villaverde (2018) update results for new
versions of each language.
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Aruoba and Fernández-Villaverde (2018)

Language Compiler Time Rel. Time
C++ GCC 1.60 1.00

Intel C++ 1.67 1.04
Clang 1.64 1.03

Fortran GCC 1.61 1.01
Intel Fortran 1.74 1.09

Java 3.20 2.00
Julia 2.35 1.47

fast 2.14 1.34
Matlab 4.80 3.00
Python CPython 145.27 90.79

CPython 166.75 104.22
R 57.06 35.66
Mathematica base 1634.94 1021.84
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Aruoba and Fernández-Villaverde (2018)

Language Compiler Time Rel. Time
Matlab, Mex 2.01 1.26
Rcpp 6.60 4.13
Python Numba 2.31 1.44
Cython Cython 2.13 1.33
Mathematica idiomatic 4.42 2.76
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