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Abstract

This paper examines the mechanism behind the fact that the size of a city and the average establishment size in the city are
positively correlated. It also examines the dependence of the size distribution of cities on industrial properties, which are crucial
in determining the size distribution of firms (establishments). For these purposes, we introduce monopolistic competition to the
stochastic urban growth model by Rossi-Hansberg and Wright (2007b, “Urban Structure and Growth,” Review of Economic Studies
74, pp.597-624.) in order to endogenously determine the size distribution of establishments as well as that of cities. The model,
calibrated to match the U.S. economy, can reproduce both the size distribution of cities and the joint distribution of city and average
establishment sizes except for generating variation of the establishment size more volatile than data. Counterfactual simulations
suggest that, in an empirically relevant situation, the size distribution of cities is almost independent of the distribution of operating
costs and productivities of industries, while the contrasting result holds in the case of the joint distribution of city and average
establishment sizes. Self selection and a lower skewed distribution of operating costs and productivities of industries are key
elements in generating the observed joint distribution.
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1. Introduction

There are two strands in the literature on the size distribution
of economic units: cities and firms (establishments). The upper
tail of the size distribution of cities is well approximated by a
Pareto distribution.1 The size distribution of all firms is also
well approximated by a Pareto distribution with coefficient one.
Although researchers have already reached a consensus on the
statistical mechanism behind these phenomena, economic inter-
pretation is still an open question (Gabaix and Ioannides, 2004;
Gabaix, 2009; Sutton, 1997; Gabaix, 2009; Luttmer, 2010).

The typical, common approach of theorists of these studies
is that the size distribution of cities (firms/establishments) is
studied independently of the size distribution of firms (cities)
in the urban (firm/establishment dynamics) literature. On the
other hand, the main objective of this paper is to consider the
sizes of both cities and establishments simultaneously in order
to investigate how and to what extent these are related. This is
in line with the suggestion by Gabaix and Ioannides (2004).

In addition to examining the independence, our research is
also motivated by the fact that the size of a city, measured by
population, and the average size of establishments in it, mea-
sured by the number of employees per establishment, are pos-
itively correlated (Figure 1). Since the average size of estab-
lishments differs across industries according to the Statistics of
U.S. Businesses (SUSB); and since the industrial diversity in a
city, defined by the number of industries the city hosts, is pos-
itively correlated with its population (Mori et al., 2008), it is
suggested that larger (smaller) cities tend to host industries, the
average establishment size of which is relatively large (small).
Then, it is interesting to ask what is a quantitative model which
can explain this phenomenon.

Following Rossi-Hansberg and Wright (2007b), we build
a dynamic stochastic general equilibrium growth model with
multiple industries, in which the joint distribution of city and
average establishment sizes is determined endogenously. Inter-
mediate goods sectors are characterized by monopolistic com-
petition a la Dixit and Stiglitz (1977). Establishment-level in-
creasing returns to scale in production is the key factor for the
determination of the size distribution of establishments. The
establishment-level increasing returns then leads to the scale
economy at the city level. The size distribution of cities is de-
termined by the trade-off between this and the commuting cost.
In the determination of the city size, competitive developers,
introduced by Henderson (1974), play a crucial role.

The analytical results we obtain are the same as those of
Rossi-Hansberg and Wright (2007b) except for obtaining the
total factor productivity (TFP) of a city as a function of micro
variables and parameters. The market equilibrium and the effi-
cient allocation are equivalent because of the existence of com-
petitive developers. The economy as a whole exhibits constant
returns to scale at the macro level. The size distribution of cities
deviates from a Pareto distribution in an empirically observed

1The coefficient of the Pareto distribution depends on the context, especially
the country we focus (e.g. Soo, 2005). For the United States, it is well known
that the coefficient is close to one.
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Figure 1: City and Establishment Sizes in the U.S., 2008

way; that is the size distribution exhibits underrepresentation of
both small and very large cities than the Pareto distribution as
mentioned by Gabaix and Ioannides (2004).

The main contribution of this paper is the results of our quan-
titative analysis. The model, calibrated to match the U.S. econ-
omy, can reproduce both the size distribution of the Metropoli-
tan Statistical Areas (MSAs) in the U.S. and the joint distribu-
tion of city and average establishment sizes, the relationship de-
picted in Figure 1, under plausible values of parameters except
for generating variation of the establishment size more volatile
than data.

Counterfactual simulations show that the size distribution of
cities depends on industrial properties such as the distribution
of operating costs and productivities of industries in general.
However, there is a range of distributions, where the size distri-
bution of cities is almost independent of industrial properties.
Especially, an empirically plausible distribution of operating
costs and productivities is included this range.

Contrary to the case of the size distribution of cities, the
joint distribution of city and average establishment sizes de-
pends crucially on industrial properties. Different distributions
of operating costs and productivities of industries, which gen-
erate almost exactly the same size distribution of cities, can
lead to contrasting results on the relationship between the city
size and the average establishment size in the city. An empir-
ically plausible distribution is characterized by the one, which
is skewed to the lower level and has self selection within in-
dustries. Large industries, characterized by higher operating
costs and thus higher average establishment sizes, have higher
productivities thanks to self selection. TFPs of cities are deter-
mined in a way that such positive correlation between the oper-
ating cost and the productivity is not eliminated and results in
the positive correlation between the operating cost and the TFP.
Then, cities, which host larger industries, are able to expand
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even though congestion costs increase.
This paper is related to three literatures. The first is the size

distribution of cities. Studies such as Gabaix (1999) and Cor-
doba (2008) seek economic explanations as to why the upper
tail of the distribution is well approximated by a Pareto distribu-
tion. Eeckhout (2004) extends the analysis to the case of all set-
tlements.2 Recently, Duranton (2007) and Rossi-Hansberg and
Wright (2007b) provide endogenous growth models, in which
the city size distribution exhibits underrepresentation of both
small and very large cities than a Pareto distribution. The study
of Hsu (2010), who provides a deterministic explanation based
on the central place theory, is one of a few studies which con-
sider the size distributions of both cities and firms simultane-
ously.

The second is the size distribution of firms or establishments.
The literature is vast and surveyed by Sutton (1997), Gabaix
(2009), and Luttmer (2010).3 One line of research is based on a
class of models which incorporate self selection a la Hopenhayn
(1992) and monopolistic competition a la Dixit and Stiglitz
(1977) (e.g. Luttmer, 2007). Our model also belongs to this
class. However, we simplify the model by assuming that there
is no fixed cost and that self selection within industries is im-
posed exogenously. Like Rossi-Hansberg and Wright (2007a),
we focus on the size distribution of establishments not firms.

The third literature is urban growth. Studies such as Eaton
and Eckstein (1997), Black and Henderson (1999), and Rossi-
Hansberg and Wright (2007b) are included in this literature.
The first two provide city growth models under deterministic
environments, while the third considers a city growth model
with aggregate technology shocks. Our model, though similar
to that of the third one, abstracts human capital, the common
feature of both lines of research, from the model in order to
simplify the discussion.

The structure of this paper is as follows: In Section 2, the
environment of the economy, problems of agents, and defini-
tion of a market equilibrium are described. Then, Section 3
discusses the analytical properties of a market equilibrium. The
results of the quantitative analyses such as calibration and coun-
terfactual simulations are provided in Section 4. Section 5 con-
cludes this paper.

2. The Model

2.1. Environment

We consider a closed economy, which consists of a finite
number of industries and an uncountably infinite number of
cities. The homogeneous final good and the differentiated inter-
mediate goods sector are vertically linked within each industry.

2Although Eeckhout (2004) argues that the size distribution is well approx-
imated by a lognormal distribution, there is another argument which discusses
that the size distribution of all settlements is well approximated by a “dou-
ble Pareto-lognormal” distribution (e.g. Reed, 2002; Giesen et al., 2010). The
double Pareto-lognormal distribution is a distribution, the density of which is
lognormal in the middle and Pareto in both the lower and upper tails.

3Luttmer (2010) surveys general equilibrium models.

Economic agents consist of households and developers in addi-
tion to firms in these two sectors.4 Production takes place in the
central business districts (CBDs) of cities. Time t is discrete;
that is t ∈ {0, 1, 2, · · · }.

2.2. Cities

A city is a disk with a CBD at its center. The CBD is ex-
pressed as a point in the two dimensional space, and all the pro-
duction activities in a city takes place within the CBD. Thus,
the residential area is equal to the area of the disk. Assuming
that each individual consumes one unit of land for housing ser-
vices, the boundary d̄ of a city with population Ñ is determined
by the resource constraint: πd̄2 = Ñ.

Residents commute to the CBD with the commuting cost
which depends on their distance from the CBD. For a resident
residing at the distance d from the CBD, the associated com-
muting cost is τdγ, where γ > 0 and τ > 0.5 Thus, the total
commuting cost in a city with population Ñ is

TCC =
∫ d̄

0
2πd(τdγ)dd = bÑ γ̃,

where b = (2τ)/(γ + 2)π−
γ
2 and γ̃ = γ/2 + 1. Dividing TCC by

population Ñ gives the average commuting cost:

ACC = bÑ γ̃−1. (1)

The urban costs include the land rent in addition to the com-
muting cost. Let R(d) denote the land rent at the distance d
from the CBD. Then, for any given level of labor income, the
equilibrium total income net of the commuting cost and the
land rent for any two different locations must be equalized;
that is R(d1) + τdγ1 = R(d2) + τdγ2 for all d1, d2 ∈ [0, d̄]. Nor-
malizing the productivity outside the city to zero, we obtain
R(d) = τ(d̄γ − dγ). Using this, the total land rent TR and aver-
age land rent AR are computed as follows:

TR =

∫ d̄

0
2πdR(d)dd = b(γ̃ − 1)Ñ γ̃, (2)

AR =
TR
Ñ
= b(γ̃ − 1)Ñ γ̃−1. (3)

We assume that the commuting cost and land rent are measured
in terms of the final good produced in the city.

2.3. Final Good Firms

There is a continuum of identical final good firms on the
[0, 1] interval. The firms produce a homogeneous good by us-
ing only differentiated intermediate goods produced within the
city they locate. Production technologies are the same across
firms and exhibit constant returns to scale.

4In this paper, we use establishments and firms interchangeably.
5This form of the commuting cost is used by Venables (2007).
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Formally, a typical final good firm residing in a city which
hosts industry j ∈ {1, 2, · · · , J} solves6

max
{x jt(v)}v∈[0,M̃ jt ]

P jt

∫ M̃ jt

0
(x jt(v))

σ−1
σ dv


σ
σ−1

−
∫ M̃ jt

0
p jt(v)x jt(v)dv

 , (4)

where P jt denotes the industry- j final good’s price, p jt(v) the
variety-v intermediate good’s price, M̃ jt the number of varieties
within the city, x jt(v) the demand for the variety-v intermedi-
ate good of the firm, and σ > 1 the elasticity of substitution
between intermediate goods. For later use, let Ỹ jt denote the
city’s output of the final good.

Letting c jt denote the cost of production, that is c jt =∫ M̃ jt

0 p jt(v)x jt(v)dv, the demand for the variety-v intermediate
good is given by

x jt(v) =
p jt(v)−σ

P1−σ
jt

c jt, (5)

where the price index P jt is given by

P jt =

∫ M̃ jt

0
p jt(v)1−σdv


1

1−σ

. (6)

2.4. Intermediate Good Firms

Intermediate good firms are monopolistically competitive.
Each firm produces a differentiated good by using physical cap-
ital k jt(v) and labor n jt(v) rented from households. The produc-
tion technology exhibits increasing returns to scale:7

A jt(k jt(v))θ j (n jt(v))1−θ j − ϕ j(k jt(v))ξ j ≥ x jt(v), (7)

where A jt is the productivity specific to industry j, θ j ∈ (0, 1)
the parameter representing importance of capital in industry j,
ϕ j the shift parameter of operating cost for industry j, and ξ j ∈
(0, 1) the curvature parameter of the operating cost. We assume
that the productivity grows at some rate gA on an average and is
subject to the industry-specific productivity shock z jt:

A jt = ez jt (1 + gA)tA j0, (8)

where {z jt}t follows an AR(1) process:

z jt = ρ jz j,t−1 + ε jt.

We assume that the productivity shock is persistent to some ex-
tent, that is ρ j ∈ (0, 1), and that the innovation ε jt is independent
across industries and over time and follows a normal distribu-
tion N(0, σ2

ε j
).

6In the model, each city hosts only one industry. This is because there is no
interaction across industries. Since this also applies to the intermediate goods
sector, increasing returns to scale in that sector results in specialization of cities.

7A similar production technology is assumed by Hornstein (1993). How-
ever, the operating cost does not depend on capital stock; that is ξ j = 0.

We also assume that there are no entry and exit costs in the
intermediate goods sector. Together with the rental market of
capital services, this means that it is sufficient for firms to max-
imize the current profit in order to maximize the expected dis-
counted profit since a “timing problem” does not exist.

The intermediate goods sector differs from the final goods
sector in that the developers discussed later give two types of
subsidies to the intermediate good firms. The first is a subsidy
for renting capital services, where the rental price r jt of capital
is discounted by the subsidy rate τk

jt. The second is a subsidy for
operations. Each developer gives a transfer T M

jt (v), measured in
terms of the industry- j final good, to the variety-v intermediate
good firm.

Formally, the variety-v intermediate good firm solves

max
p jt(v),k jt(v),n jt(v)

π jt(v) = p jt(v)x jt(v) − (1 − τk
jt(v))r jtk jt(v)

−w jtn jt(v) + P jtT M
jt (v) (9)

subject to (7), where w jt is the nominal wage rate specific to
industry j. After some calculations, we obtain

(1 − τk
jt(v))

r jt

p jt(v)
=
σ − 1
σ

θ jA jt

[
n jt(v)
k jt(v)

]1−θ j

−ξ jϕ j(k jt(v))ξ j−1
}
, (10)

w jt

p jt(v)
=
σ − 1
σ

(1 − θ j)A jt

[
k jt(v)
n jt(v)

]θ j

, (11)

which shows that the marginal productivity conditions are dis-
torted by the existence of monopolistic competition. The max-
imized real profit π jt(v)/p jt(v) is obtained by substituting (7),
(10) and (11) into the objective function:

π jt(v)
p jt(v)

=
1
σ

A jt(k jt(v))θ j (n jt(v))1−θ j

−
(
1 − ξ j

σ − 1
σ

)
ϕ j(k jt(v))ξ j +

P jt

p jt(v)
T M

jt (v).

Since there is no idiosyncratic shock, we focus on the sym-
metric case:

π jt(v) = π jt, k jt(v) = k jt, n jt(v) = n jt, p jt(v) = p jt,

τk
jt(v) = τk

jt, and T M
jt (v) = T M

jt . (12)

Free entry leads to the zero-profit condition; that is π jt/p jt =

0. Consolidating this, (6) and (12) gives us the total lump-sum
subsidy T M

jt M̃ jt to intermediate good firms within a city:

T M
jt M̃ jt = M̃

σ
σ−1
jt

[(
1 − ξ j

σ − 1
σ

)
ϕ jk
ξ j

jt −
1
σ

A jtk
θ j

jt n
1−θ j

jt

]
. (13)

2.5. Developers

New cities are created by competitive developers. We assume
that a developer has only one city. Developers attract work-
ers, capital and establishments by subsidizing them since all
these factors are crucial in determining the developers’ profit.
Specifically, developers use three types of subsidies, each cor-
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responding to one of labor, capital stock or operations of estab-
lishments. The first is the lump-sum transfer to residents. A
developer of a city hosting industry j gives the lump-sum trans-
fer T n

jt equally to the city residents. Since a typical worker earns
the nominal labor income w jt and must pay the commuting cost
AC jt as well as the land rent AR jt, the net real income Ω jt after
considering the lump-sum transfer T n

jt is expressed by

Ω jt =
w jt

P jt
+ T n

jt − ACC jt − AR jt, (14)

where T jt is measured in terms of the industry- j final good.
Developers must take Ω jt as given because of free mobility of
workers.

The second type of the subsidy is the one for renting capital
services. As previously mentioned, intermediate good firms can
rent capital services at the price discounted by τk

jt. If we let
K̃ jt denote the level of capital services used in a city hosting
industry j, a developer’s real total subsidy for renting capital
services is equal to (τk

jtr jt/P jt)K̃ jt.
The third one is the lump-sum transfer to intermediate good

firms. Specifically, the developer of a city hosting industry j
gives establishments the lump-sum transfer T M

jt equally in order
to influence the number of establishments in the city.8 Thus,
if we let M̃ jt denote the number of establishments in the city,
the developer’s real total subsidies for operations is equal to
T M

jt M̃ jt, where T M
jt is measured in terms of the industry- j final

good.
These three types of subsidies must be financed by the rev-

enue of the developer, which consists of the land rent only.
Therefore, taking the prices (P jt, r jt,w jt) and the transfer Ω jt

as given, a typical developer solves

max
T n

jt ,τ
k
jt ,T

M
jt

TR jt − T n
jtÑ jt −

τk
jtr jt

P jt
K̃ jt − T M

jt M̃ jt


subject to (1), (2), (3), (6), (10), (11), (12), (13), (14), and defi-
nitions, k jt = K̃ jt/M̃ jt and n jt = Ñ jt/M̃ jt.

We assume that there are many potential developers in the
economy. Assuming further that there are no costs of entry and
exit in this sector, the optimized profit of developers must be
zero in an equilibrium.

2.6. Households

There is a continuum of identical households on the [0, 1]
interval. The number Nt of workers in each households grows
at some rate gN ; that is Nt+1 = (1 + gN)Nt. Without loss of
generality, we normalize the initial population N0 to one; that is
N0 = 1. Each worker’s efficiency is identical and normalized to
one. Thus, if we let N jt denote the labor supply for industry j,
it must hold that

J∑
j=1

N jt ≤ Nt. (15)

8Note that the lump-sum transfer reduces the operating cost of establish-
ments.

Households also own industry-specific physical capital
stocks and lend them to the intermediate goods sector. Follow-
ing Rossi-Hansberg and Wright (2007b), we assume that the
capital stocks evolve according the following law of motion:9

K j,t+1 = Kω j

jt I1−ω j

j,t , (16)

where I j,t is the investment specific to industry j, and ω j ∈
(0, 1).

The preference of households is expressed by the expected
discounted utility:

E0

∞∑
t=0

βt

Nt

J∑
j=1

α j ln
(
C jt

Nt

) , (17)

where β ∈ (0, 1) denotes discount factor, C jt household-level
industry- j final good, and α j ∈ (0, 1) the expenditure parameter
for industry j, which satisfies

∑J
j=1 α j = 1.

A typical household maximizes the expected discounted util-
ity subject to labor resource constraint (15), the law of motion
(16) for each type of capital stock, and period-by-period budget
constraints:

J∑
j=1

P jt[C jt + I jt + (ACC jt + AR jt)N jt]

≤
J∑

j=1

[w jtN jt + r jtK jt + P jtT n
jtN jt], (18)

Since each household is of measure zero, it takes both the aver-
age commuting cost ACC jt and average rent AR jt as given.

2.7. Equilibrium

We now define a market equilibrium of the economy. As
previously mentioned, we focus on a symmetric equilibrium,
where establishments of any given industry behave similarly.

Definition. A symmetric equilibrium of the economy is the
state in which the price system (P jt, p jt, r jt,w jt), the quantities
(C jt,N jt,K jt, I jt, x jt, k jt), the size distribution (µ jt, ÑJt) of cities,
the size distribution (M̃ jt, n jt) of establishments, and the subsi-
dies (τk

jt,T
n
jt,T

M
jt ) are such that

1. given the prices {P jt,w jt, r jt} j, the lump-sum transfer
{T n

jt} j, the average commuting cost {ACC jt} j and the av-
erage rent {AR jt} j, households maximize the expected dis-
counted utility (17) subject to the budget constraint (18),
the labor constraint (15) and the law of motion (16) for
capital stock;

2. given the prices (P jt, p jt) and the number M̃ jt of varieties
of intermediate goods, industry- j final good firms maxi-
mize their profit (4);

3. given the demand (5), the aggregate price P jt, the technol-
ogy (7), and the lump-sum transfer T M

jt , industry- j inter-
mediate good firms maximize their profit, (10) and (11);

9This equation states that the growth rate of capital stock is determined by
the investment ratio I j,t/K j,t .
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4. given the net income Ω jt and the firms’ optimal behavior,
developers maximize their profit;

5. the aggregate price P jt is consistent with individual prices
(6);

6. free entry into the intermediate goods sector (13);
7. free entry into the developer’s sector;
8. the markets clear

(Final good) µ jtỸ jt = C jt + I jt + µ jtbÑ γ̃jt,

(Intermediate goods) A jtk
θ j

jt n
1−θ j

jt − ϕ jk
ξ j

jt = x jt,

(Labor) N jt = µ jt M̃ jtn jt,

(Capital) K jt = µ jt M̃ jtk jt.

3. Properties of a Market Equilibrium

In this section, we discuss the analytical properties of a mar-
ket equilibrium. We first establish that both the market equilib-
rium and the solution to the social planner’s problem are equiv-
alent. Then, noting that the optimal solution is unique, we de-
rive the size dynamics of cities and establishments. Finally, we
obtain the analytical properties of the size distribution of cities
and establishments.

3.1. Symmetric Efficient Allocation

To prove the equivalence between the market equilibrium and
the social planner’s problem, we formulate the social planner’s
problem as follows:

max
{C jt ,I jt ,N jt}∞t=0

E0

∞∑
t=0

βt

Nt

J∑
j=1

α j ln
(
C jt

Nt

)
s.t.

C jt + I jt = µ jt(Ỹ jt − bÑ γ̃jt), (19)

Ỹ jt = M̃
σ
σ−1
jt

(
A jtk

θ j

jt n
1−θ j

jt − ϕ jk
ξ j

jt

)
, (20)

K jt = µ jtK̃ jt, (21)
K̃ jt = M̃ jtk jt, (22)
N jt = µ jtÑ jt, (23)
Ñ jt = M̃ jtn jt, (24)

J∑
j=1

N jt = Nt, (25)

K j,t+1 = Kω j

jt I1−ω j

jt .

The resource constraint on the industry- j final good is ex-
pressed by (19). The right hand side is the number µ jt of cities
hosting industry j times the per-city output (Ỹ jt − bÑ γ̃jt) net of
commuting cost. (20) is the production function of the final
good under the symmetry of intermediate goods sector (12).
(21) states that the beginning-of-period capital stock K jt is al-
located across cities in the industry, and (22) shows that the
city-level capital K̃ jt is allocated across establishments, whose
capital inputs are equal to k jt. (23) and (24) are the labor ver-
sion. (25) is the labor resource constraint.

We call the optimal solution to the social planner’s problem
the symmetric efficient allocation. The following result shows
that it is sufficient to focus on the symmetric efficient alloca-
tion in order to characterize the long-run properties of the size
distribution of cities and establishments in the economy.10

Proposition 1. The symmetric equilibrium allocation and the
symmetric efficient allocation are equivalent. In addition, the
symmetric efficient allocation is unique.

The equivalence between the two is due to the existence of
competitive developers. Given that each developer can control
economic activities of its city through subsidies, the profit max-
imization of the developers internalizes the externality and cor-
rects the distortion of the economy. Even though developers
have such a great influence on the economic activities, free en-
try eliminates the monopoly rent of them.

Note that the social planner’s problem has the following re-
cursive steps:

1. Given the industry-wide capital K jt, labor N jt, and size dis-
tribution (µ jt, Ñ jt) of cities, the gross output Ỹ jt in a city is
maximized by choosing the number M̃ jt of establishment
within the city.

2. Given the industry-wide capital K jt, labor N jt, and the re-
sult of the first step, the economy-wide net output µ jt(Ỹ jt −
bÑγjt) is maximized by choosing the number µ jt of cities
hosting a industry.

3. Given the result of the second step, the expected dis-
counted utility is maximized by choosing the allocation
of labor {N jt}Jj=1 and investments {I jt}Jj=1.

The first two steps correspond to static problems embedded
in the restrictions to the optimization problem, while the last
one is dynamic. Each step is discussed in the following subsec-
tions.

3.2. Determination of Establishment Size
The optimization problem in the first step is formulated by

substituting (22) and (24) into (20):

max
M̃ jt

Ỹ jt = M̃
σ
σ−1
jt

A jtK̃
θ j

jt Ñ1−θ
jt

M̃ jt
− ϕ j

(
K̃ jt

M̃ jt

)ξ j

 .

In determining the gross output Ỹ jt, the social planner faces a
trade-off between “love of variety” M̃

σ
σ−1
jt and increasing returns

to scale at the establishment level, as given in the brackets.11

After some calculations, we obtain12

n jt =

[
(σ − 1)

(
σ

σ − 1
− ξ j

)] 1
1−ξ j (K̃ jt/Ñ jt)

ξ j−θ j
1−ξ j

(A jt/ϕ j)
1

1−ξ j

. (26)

10The proof is provided in the appendix.
11Given that ξ j ∈ (0, 1), it is easy to check that A jtK̃

θ j
jt Ñ

1−θ j
jt /M̃ jt −

ϕ j(K̃ jt/M̃ jt)ξ j > A jt K̃
θ j
jt Ñ

1−θ j
jt /(aM̃ jt) − ϕ j[K̃ jt/(aM̃ jt)]ξ j for any constant a ∈

(0, 1).
12The optimal number M̃ jt of establishments is given by M̃ jt = Ñ jt/n jt.
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This implies the following: At the establishment level, labor n jt

and capital K̃ jt/Ñ jt = k jt are substitutable if the operation cost
does not depend on capital so much; that is ξ j < θ j. Further-
more, other things being equal, an increase in the normalized
establishment-level productivity A jt/ϕ j allows the expansion of
variety; that is it weakens the trade-off between the love of va-
riety and increasing returns.

3.3. Determination of City Size

Given the result in the first step, the optimization problem in
the second step is written as follows:

max
µ jt

{
µ jt(Ỹ jt − bÑ γ̃jt) = Ψ j(A jtK

θ j

jt N1−θ j

jt )
1

1−ξ j
( σ
σ−1−ξ j)

×
(
ϕ jK

ξ j

jt

)− 1
(1−ξ j )(σ−1)

µ
− 1
σ−1

jt − bN γ̃jtµ
1−γ̃
jt

}
, (27)

where

Ψ j ≡
(σ − 1)

(
σ
σ−1 − ξ j

)
− 1[

(σ − 1)
(
σ
σ−1 − ξ j

)] 1
1−ξ j

( σ
σ−1−ξ j)

.

In determining the net output µ jt(Ỹ jt − bÑ γ̃jt), the social planner
faces a trade-off between increasing returns to scale at the city
level and economization of commuting cost.

To avoid the meaningless case, we assume that the resulting
net output is positive. This requires us to assume the following:

Assumption 1. γ̃ > σ
σ−1 or, equivalently, γ > 2

σ−1 such that the
net output µ jt(Ỹ jt − bÑγjt) is positive.

Then, as in Rossi-Hansberg and Wright (2007b), we obtain
the aggregate constant returns to scale:

Proposition 2. The industry technology exhibits constant re-
turns to scale at the aggregate level:

µ jt(Ỹ jt − bÑ γ̃jt) = Ã jtK
θ̃ j

jt N1−θ̃ j

jt , (28)

where the TFP Ã jt and effective share parameter θ̃ j are given
by

Ã jt ≡
[(σ − 1)(γ̃ − 1) − 1]b

[(σ − 1)(γ̃ − 1)b]
γ̃−1
γ̃− σ
σ−1

×


(σ − 1)

(
σ
σ−1 − ξ j

)
− 1[

(σ − 1)
(
σ
σ−1 − ξ j

)] 1
1−ξ j

( σ
σ−1−ξ j)


γ̃−1
γ̃− σ
σ−1

×A
1

1−ξ j
( σ
σ−1−ξ j) γ̃−1

γ̃− σ
σ−1

jt ϕ
− 1

(1−ξ j)(σ−1)
γ̃−1
γ̃− σ
σ−1

j , (29)

θ̃ j ≡
γ̃ − 1
γ̃ − σ

σ−1

1
1 − ξ j

[
θ j

(
σ

σ − 1
− ξ j

)
−
ξ j

σ − 1

]
.

The endogenous determination of the number µ jt of cities
results in balancing the increasing returns at the city level and
economization of the commuting cost, leading to the constant
returns to scale at the macro level.

In the following, we focus on the natural case:

Assumption 2. The gross domestic product of any industry is
an increasing function of capital and labor; that is θ̃ j ∈ (0, 1)
for all j.

Then, the city size Ñ jt is given by

Ñ jt =
1

{[(σ − 1)(γ̃ − 1) − 1]b}
1
γ̃−1

Ã
1

(1−θ̃ j)(γ̃−1)

jt (ke
jt)

θ̃ j
γ̃−1 , (30)

where ke
jt = K jt/(Ã

1
1−θ̃ j

jt N jt) is the capital stock per efficiency unit
of labor. This implies that an increase in productivity Ã jt or cap-
ital ke

jt raises workers’ productivity in a given city. This allows
an expansion of a city even if the commuting cost increases as
the city size becomes larger.

3.4. Size Dynamics

Consolidating the above results of the first two steps and the
original problem gives the following reduced problem, which is
now expressed as the Bellman equation:

V(S) = max
{C j,I j,N j}Jj=1


J∑

j=1

α j ln
(
C j

N

)
+ β̃E

[
V(S′)|S]

s.t.

C j + I j = Ã jK
θ̃ j

j N1−θ̃ j

j ,

J∑
j=1

N j = N,

K′j = Kω j

j I1−ω j

j ,

Ã′j =
[
ez′j−z j (1 + gA)

] 1
1−ξ j

( σ
σ−1−ξ j) γ̃−1

γ̃− σ
σ−1 Ã j,

z′j = ρ jz j + ε j

where S = ({K j, Ã j, z j}Jj=1,N), the vector of state variables, and
β̃ = β(1 + gN), which is assumed to be less than one. We omit
the time subscript t, and the prime denotes the next period. The
law of motion for Ã j is obtained by consolidating (8) and (29).

This is nothing but a neoclassical optimal growth model with
multiple industries. The standard argument of the dynamic pro-
gramming tells us that the optimal solution is characterized by
constant shares:

N j = sn
j N,

I j = sI
jÃ jK

θ̃ j

j N1−θ̃ j

j , (31)

where

sn
j ≡

(1 − θ̃ j)[α j + β̃(1 − ω j)DK
j ]∑J

j=1(1 − θ̃ j)[α j + β̃(1 − ω j)DK
j ]
∈ (0, 1),

sI
j ≡

β̃(1 − ω j)DK
j

α j + β̃(1 − ω j)DK
j

∈ (0, 1),

DK
j ≡

α jθ̃ j

1 − β̃[ω j + (1 − ω j)θ̃ j]
> 0.
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Except for the specification of the law of motion for the capital
stock, this is equivalent to the standard Solow growth model.

In what follows, we first derive the law of motion for the
capital stock per efficiency unit of labor ke

jt. Then, we derive
the laws of motion both of the population Ñ jt of a city and the
number n jt of employees per establishment by noting that these
two variables are given as functions of ke

jt.

3.4.1. Capital Stock
The law of motion for ke

jt is computed by substituting the
optimal investment policy function (31) into the law of motion
for the aggregate capital stock K jt:

ln

ke
j,t+1

ke
jt

 = (1 − ω j)(1 − θ̃ j)[ln(ke
j,ss) − ln(ke

jt)]

−
z j,t+1 − z jt

ξ j − θ j
, (32)

where ke
j,ss denotes the deterministic steady-state level of ke

jt
given by

ke
j,ss =

(sI
j)

1−θ j

[(1 + gy)(1 + gN)]
1

(1−ω j)(1−θ̃ j)

.

gy is the growth rate of Ã
1

1−θ̃ j

jt , which corresponds to the growth
rate of per capita income in a balanced growth path. In a de-
terministic case, that is z jt = 0 for all j and t, {ke

jt}∞t=0 converges
monotonically to ke

j,ss for any initial condition ke
j,0. This is be-

cause the law of motion (32) exhibits a “mean reversion” prop-
erty in the sense that the growth rate ke

j,t+1/k
e
jt is decreasing in

the size ke
jt.

3.4.2. City Size
The law of motion for the size Ñ jt of a city is computed from

(8), (29) and (30):

ln
(

Ñ j,t+1

Ñ jt

)
=

θ̃ j

γ̃ − 1
ln

ke
j,t+1

ke
jt


+

1
(1 − θ̃ j)(1 − ξ j)

σ
σ−1 − ξ j

γ̃ − σ
σ−1

×
[
z j,t+1 − z jt + ln(1 + gA)

]
.

Note that the dynamics is consistent with the parallel growth
mentioned by Eaton and Eckstein (1997). To see this, focus on
the deterministic case, where z jt = 0 for all t and j. Then, the
steady-state growth rate is given by

ln
(

Ñ j,t+1

Ñ jt

)
=

1
(1 − θ̃ j)(1 − ξ j)

σ
σ−1 − ξ j

γ̃ − σ
σ−1

ln(1 + gA).

Since ξ j < 1 and γ̃ > σ/(σ − 1) by assumption, the coefficient
of the right hand side is positive. Thus, cities grow if the pro-
ductivity grows; that is gA > 0. In addition, if parameters are
symmetric, the growth rates become the same across cities.

3.4.3. Establishment Size
Before deriving the law of motion for the establishment size,

we first restrict attention to the case where the following as-
sumption holds:

Assumption 3. In a deterministic steady state, the establish-
ment size of any industry is constant.

Eleven years data of the establishment size from SUSB re-
veals that no clear trend in the average establishment size can
be seen for each three-digit industry except for manufacturing
industries. We neglect the decreasing trend observed in man-
ufacturing industries. This is because the current closed econ-
omy model cannot take into account of international trade fac-
tors, which might be crucial for explaining such a decreasing
trend.

Then, the following result gives the formulation which gives
the establishment size as well as a restriction to the relationship
between the curvature parameter ξ j of the operation cost and
the importance θ j of capital when we consider the economy
with long-run growth:13

Proposition 3. Assume that Assumption 3 holds. Then, (i) the
long-run growth rate of per capita income is given by

1 + gy = (1 + gA)
1

ξ j−θ j ; (33)

(ii) parameters must satisfy

ξ j − θ j

(1 − θ̃ j)(1 − ξ j)

(
σ

σ − 1
− ξ j

)
γ̃ − 1
γ̃ − σ

σ−1
= 1; (34)

and (iii) the establishment size is given by

n jt = Υ jϕ
σ−1

(1−ξ j )σ+ξ j

j (ke
jt)
ξ j−θ j
1−ξ j , (35)

where

Υ j ≡

 [(σ − 1)(γ̃ − 1) − 1]b

[(σ − 1)(γ̃ − 1)b]
γ̃−1
γ̃− σ
σ−1


ξ j−θ j

(1−θ̃ j)(1−ξ j )

×
[
(σ − 1)

(
σ

σ − 1
− ξ j

)
− 1

] 1
σ
σ−1 −ξ j

.

Note that, under Assumption 3 we must assume that ξ j > θ j

in order to allow the economy exhibit the long-run growth of
income per capita. Since the establishment size n jt is decreasing
in productivity A jt according to (26), the model requires the
complementarity between capital and labor, that is ξ j > θ j, in
order to make n jt constant over time.

The implied law of motion for the establishment is as fol-
lows:

ln
(

n j,t+1

n jt

)
=
ξ j − θ j

1 − ξ j
ln

ke
j,t+1

ke
jt

 .
13For the first result, we use (26) and (29). For the second result, we use the

definition of gy and (29).
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3.5. Size Distributions of Cities

Finally, we can show that the size distribution of cities ex-
hibits concavity in the long run; that is, compared with Zipf’s
law, we observe the underrepresentation of both small and very
large cities. This is what we observe in the data, which is men-
tioned as a robust systematic deviation from the Pareto distri-
bution of coefficient one (See Gabaix and Ioannides (2004)).

The key mechanism is the mean reversion of the capital stock
per efficiency unit of labor ke

jt. Since larger (smaller) cities are
associated with larger (smaller) capital stock, the mean rever-
sion implies that they grow at rates lower (higher) than the av-
erage.14 In a special case, where the mean reversion does not
work, the size distribution of cities obeys the Pareto distribution
with coefficient one.

The following proposition summarizes these discussions:15

Proposition 4. white

1. (i) Consider a economy with no storage technology, where
there is no capital, that is θ j = 0; the operating cost does
not depend on capital, that is ξ j = 0; the shift factor ϕ j

grows at the same rate as the productivity A jt; and the
technology shock follows a random walk ρ j = 1. Further,
assume that the number J of industries is sufficiently large.
Then the growth process of the city size exhibits Gibrat’s
law. (ii) In addition, if city sizes are bounded below by
f > 0, then the long-run distribution of city sizes obeys
Zipf’s law as f → 0.

2. If productivities {A jt} are uniformly bounded; and if the
number J of industries is sufficiently large, there exists a
unique invariant distribution of city sizes with underrep-
resentation of both small and very large cities than the
Pareto distribution with coefficient one.

4. Quantitative Analysis

In this section, we first investigate the extent to which the
model can reproduce the observed joint distribution of city and
average establishment sizes as well as the size distribution of
cities under empirically plausible values of parameters. In or-
der to do this, we calibrate the model to match some empirical
data on growth, industries, and cities pertaining to the United
States. Our result shows that this kind of model can reproduce
both distributions except for generating variation of the estab-
lishment size more volatile than data.

Then, we conduct two counterfactual simulations in order to
examine the dependence of the size distribution of cities on the

14(30) shows that the city size Ñ jt is increasing in the capital stock per effi-
ciency unit of labor k̃ jt . In addition, the law of motion of ke

jt , given by (32), im-
plies that the growth rate is likely negative (positive) when ke

jt is above (below)
its steady-state level ke

j,ss. These two results together imply the mean reversion
of cities.

15Since the approach in proving the proposition is the same as Rossi-
Hansberg and Wright (2007b), we omit the proof. We can show that the same
result applies to the case of the size distribution of establishments. However we
omit it from the proposition since we do not make use of it in the quantitative
analysis.

industrial property, which is a crucial factor in determining the
size distribution of establishments. In the first case, we assume
that industries are symmetric. In the second case, we assume
that the distribution of (ϕ j, A j0) is uniform in a certain sense.

We confirm that the size distribution of cities depends on the
distribution of (ϕ j, A j0) in general. However, there is a range
of distributions of (ϕ j, A j0) that variations of (ϕ j, A j0) does not
change the size distribution of cities significantly. Especially
for distributions of (ϕ j, A j0) close to the calibrated one, the size
distribution of cities is determined almost independently of the
distribution of (ϕ j, A j0).

However, when it comes to the case of the joint distribu-
tion of city and average establishment sizes, the distribution of
(ϕ j, A j0) has a crucial role. The results show that self selection
within industries and a lower skewed distribution of (ϕ j, A j0) is
necessary in order to generate the empirically observed positive
correlation between the size of a city and the average establish-
ment size in the city.

In what follows, we first describe the calibration of the
model. Then, the results of the counterfactual simulations are
presented.

4.1. Calibration

4.1.1. Strategy
In order to focus on heterogeneity of the initial productivity

A j0 and the shift parameter ϕ j of the operating cost, we assume
that values of the rest of parameters are the same across indus-
tries:

α j = α, θ j = θ, ω j = ω, ξ j = ξ, ρ j = ρ, σε j = σε.

Note that we allow each industry to have a different sample path
{z jt}t of productivity shocks.

Thus, given the number J of industries, there are 2J + 12 pa-
rameters, each of which is categorized into those calibrated in-
dependently without simulating the model and those calibrated
jointly by simulating the model. The former consist of (i) the
discount factor β, (ii) expenditure parameter α, (iii) population
growth rate gN , (iv) persistence ρ of productivity shock, (v)
standard deviation σε of the innovation, (vi) importance θ of
capital, (vii) persistence parameter ω in the law of motion for
capital, (viii) curvature parameter γ of the commuting cost, and
(ix) shift parameter τ of the commuting cost. The rest 2J + 3
parameters are (i) the elasticity σ of substitution between inter-
mediate goods, (ii) curvature parameter ξ of the operating cost,
(iii) long-run growth rate gA of productivity, (iv) shift parame-
ters {ϕ j}Jj=1 of the operating cost, and (v) initial productivities
{A0 j}Jj=1.

The choice of J depends on the industry. In this paper, we
focus on the three-digit industries according to the 2002 North
American Industrial Classification System (NAICS). The avail-
able number of industries is 53, and thus, we set J = 53.16 Here,

16Since we need to calibrate {A j0, ϕ j}Jj=1, we must restrict our attention to
some industrial classification for which data necessary for our calibration are
available.
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β α gN ρ σε θ

0.939 1/53 0.012 0.76 0.07 0.3

ω γ τ σ ξ gA

0.9 1 10 4.35 0.403 0.002

Table 1: Parameters

we exclude three-digit industries in “Agriculture, forestry, fish-
ing, and hunting,” “Mining,” “Utilities,” and “Construction” in
order to focus on urban economic activities.

4.1.2. Independently Calibrated Parameters
Values of parameters except for {ϕ j, A0 j}Jj=1 are shown in Ta-

ble 1. The value of β implies that the average annual real rate
of return is about 5%. α = 1/J since expenciture shares are the
same across industries. gN is set so that the annual population
growth rate is equal to 1.2%. ρ and σε are consistent with the
estimate of Horvath (2000). θ is slightly lower than one-third
since capital is included in the operating cost. ω and γ is the
same as in Rossi-Hansberg and Wright (2007b). The value of τ
is arbitrary since it does not affect relative size of cities.

4.1.3. Jointly Calibrated Parameters
Jointly calibrated parameters are obtained by following the

steps:

1. Choose a value of σ.
2. Compute ξ which satisfies (34). If θ̃ ∈ (0, 1), proceed to

the next step. Otherwise, go back to step 1.
3. Compute gA from (33). where the annual growth rate gy of

per capita income is set to 2%.
4. Compute {Ã j0}Jj=1 by using (28) and data on GDP, capital

stock, and employments.
5. Compute {ϕ j}Jj=1 by substituting data on the number of em-

ployees per establishment and the value of ke
jt, implied by

step 4, into (35) and solving the result for ϕ j.
6. Compute {A0 j}Jj=1 by substituting the previous steps into

(29).
7. Regress the natural logarithm of A0 j on that of ϕ j and reset

A0 j to the fitted value of the regression.
8. Simulate the model in order to obtain the mean of the size

distribution of cities and compare the result with the ac-
tual size distribution of 597 MSAs in U.S. in 2008. If the
difference between the two is sufficiently close, stop. Oth-
erwise, go back to step 1.

In step 3, we set the annual growth rate gy of per capita in-
come to 2%. In step 4, we use the GDP-by-industry accounts
and Fixed Assets Accounts of the Bureau of Economic Analy-
sis (BEA) in 2007 for GDP and capital stock, respectively. The
number of employees is based on SUSB in 2007. In step 5,
we use data on the number of employees per establishment in
SUSB in 2007. Figure 2 depicts the relationship between ϕ j and
A0 j which are calibrated in step 5, 6 and 7, respectively. It sug-
gests that we can approximate the relationship by a log-linear
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Figure 2: The Shift Parameter of the Operating Cost and the Initial Productivity

form. In step 8, the mean of the size distribution of cities is ob-
tained by conducting 1,000 Monte Carlo simulations. In each
case, we first compute the size distribution {Ñ jt, µ jt}Jj=1 of cities
by setting the time period to be 10,000 years. Then, computing
the cumulative distribution function of city sizes, we generate
597 cities by random sampling with a linear interpolation.

The resulting relationship between the shift parameter ϕ j of
the operating cost and the TFP Ã jt is slightly positive. Since, for
a fixed level of productivity A jt, the TFP Ã jt is decreasing in ϕ jt,
self selection within industries, which is exogenously assumed
and depicted in Figure 2, is sufficient in order to dominate this
negative direct effect of ϕ j on Ã jt.

Figure 3 shows size distributions of cities in both the model
and data as well as the 90 percent confidence interval computed
by the Monte Carlo simulation. The size distribution of cities
observed in the data not only is included in the 90 percent con-
fidence interval but also differs little from the mean of the size
distribution of cities in the model.

Note that the calibrated value of σ, 4.35, belongs to the em-
pirically plausible range of σ (e.g. Broda and Weinstein, 2006).
From these results, we infer that this kind of model, that is
model with monopolistic competition and endogenous city cre-
ation, is a candidate model, which can reproduce the observed
size distribution of cities.

4.2. Joint Distribution of City and Average Establishment Sizes
We can also evaluate the model by adding the joint distribu-

tion of city and average establishment sizes as a new restriction
to economic modeling. Thus, we compare the simulation result
with the data from this point of view. In simulation, we apply
the same method as in the previous calibration except that we
conduct 100 Monte Carlo simulations.

Figure 4 shows the result thus obtained. The actual joint dis-
tribution is included in the possible range of the simulated joint
distribution.
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Figure 3: Size Distribution of Cities

However, we note that there is excessive variation in the rel-
ative size of establishments in the model. This could be the
result of three properties of the model:17 (i) There is no adjust-
ment cost of labor. If adjusting labor is costly, the variation in
the establishment size would be smaller; (ii) There is no hu-
man capital. If establishments could use human capital as an
additional input, the variation in the number of employees per
establishment would be absorbed to some extent by the varia-
tion in human capital per establishments; and (iii) A city hosts
only one industry. If a city hosts multiple industries and if there
is hierarchy of cities as mentioned by Mori et al. (2008), the
shift parameter of the operating cost specific to the city is the
weighted average of {ϕ j}Jj=1. Then, the variation in labor would
be eliminated to some extent since the variation in the shift pa-
rameter would decrease.

4.3. Implications of Industrial Properties

Previous results suggest that our model can be used as a
benchmark in the study of the determination of the joint dis-
tribution of city and average establishment sizes. However, we
have left the question of the interdependence between the size
distribution of cities and the size distribution of establishments.

We thus finally conduct two counterfactual simulations in or-
der to answer this question. In the first case, we assume that
industries are symmetric in the sense that parameters includ-
ing {ϕ j, A j0}Jj=1 are the same across industries. In the second
case, we assume that the distribution of (ϕ j, A j0) is uniform
in the sense that ϕ j is uniformly distributed on the interval
[min{ϕ j},max{ϕ j}]; and that A j0 is the fitted value of the re-
gression with the same regression coefficient as in the previous
subsections. Because of limitations of the model, we consider

17Relaxing these assumptions is one direction of future research.
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Figure 4: Joint Distribution of City and Average Establishment Sizes

only the dependence of the size distribution of cities on the dis-
tribution of (ϕ j, A j0), which is a crucial factor in determining
the size distribution of establishments.

4.3.1. Symmetric Industries
Figure 6 and 7 show the size distribution of cities and the

joint distribution of city and average establishment sizes under
the assumption that industries are symmetric, respectively.18

The former shows that the size distribution of cities differs little
from the benchmark case. Stated differently, the change from
the counterfactual distribution of ϕ j to the benchmark one, de-
picted in Figure 5, has negligible impact on the size distribution
of cities.

The latter shows that the correlation between the natural log-
arithm of city sizes and that of average establishment sizes is
slightly negative. Comparison between the size determination
of cities, (30), and that of establishments, (35), makes clear the
mechanism behind this result. The difference is that the city
size Ñ jt depends not only the capital stock per efficiency unit of

labor k̃e
jt but also the TFP Ã

1
1−θ̃ j

jt while the establishment size n jt

depends on k̃e
jt only. Since, other things being equal, k̃e

jt is de-

creasing in Ã
1

1−θ̃ j

jt by definition, the negative correlation between
Ñ jt and n jt can emerge.19

Comparing this result with the benchmark case, we can con-
clude that we need variation of ϕ js and self selection within
each industry in order to generate the positive correlation be-
tween city and establishment sizes. The variation of ϕ js to-
gether with self selection generates additional variation of the

18In this case, values of ϕ j and A0 j does not matter to relative sizes.
19If industries are symmetric, ϕ js are equal across industries. Thus, the pos-

itive correlation between Ñ jt and n jt through the positive relation between the
TFP Ã jt and ϕ j is eliminated.
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size of cities, which is systematic in a sense that these generate
a positive correlation between the city size Ñ jt and the estab-
lishment size n jt. In addition, this effect dominates the effect
of the relationship between the TFP and the capital stock per
efficiency unit of labor.

4.3.2. Uniform Distribution of (ϕ j, A j0)
Figure 8 shows the size distribution of cities under the as-

sumption that the distribution of (ϕ j, A0 j) is uniform as defined
previously. The size distribution of cities drastically changes
from the benchmark case. Especially, the confidence interval
expands. This is because, compared with the distribution of ϕ j

in the benchmark case depicted in Figure 5, the uniform dis-
tribution of ϕ j results in the greater variation in the level of
TFPs Ã jt. (30) then suggests that the variation of Ñ jt becomes
larger.20 The mean of the size distribution of cities shows that
the share of cities in the middle range increases compared with
the benchmark case, and this is what is predicted.

5. Conclusion

In this paper, we build a dynamic general equilibrium growth
model with multiple industries, in which the joint distribution
of city and average establishment sizes is determined endoge-
nously. Monopolistic competition in the intermediate goods
sector of industries plays an important role in determining the
size distribution of establishments. The establishment-level in-
creasing returns then leads to the scale economy at the city
level. The size distribution of cities is determined by the trade-
off between this and the commuting cost.

20Note that the dynamics of the capital stock per efficiency unit of labor ke
jt

is the same across all cases.
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Figure 6: Size Distribution of Cities: The Case of Symmetric Industries

The quantitative analysis suggests that this kind of model is
promising in understanding the joint distribution of city and av-
erage establishment sizes. The model, calibrated to the U.S.
economy, can reproduce both the observed size distribution of
cities and the joint distribution of city and average establish-
ment sizes except for generating variation of the establishment
size more volatile than data.

Counterfactual simulations show that the size distribution of
cities depends on the industrial properties such as the distribu-
tion of operating costs of production and productivities in gen-
eral. Depending on the distribution, the city size distribution is
almost independent of it.

It is also shown that variation in operating costs and self se-
lection within industries are necessary in order to generate the
positive correlation between the city and establishment sizes.
Large industries, characterized by higher operating costs and
thus higher average establishment sizes, have higher productiv-
ities thanks to self selection. TFPs of cities are determined in
a way that such positive correlation between the operating cost
and the productivity is not eliminated and results in the posi-
tive correlation between the operating cost and the TFP. Then,
cities, which host larger industries, are able to expand.

There are several future research directions. Taking into ac-
count of hierarchy principle mentioned by Mori et al. (2008) is
one of the most important extensions. This extension could not
only reduce the excessive variation of the average size of es-
tablishments but also enrich the economic modeling of the joint
distribution of city and average establishment sizes by adding
the “Number-Average Size” rule, argued by Mori et al. (2008),
as an additional restriction.

Endogenizing self selection within industries is also one of
the most important extensions. In this paper, we imposed self
selection exogenously. Thus, the quantitative analysis consid-
ered only the dependence of the size distribution of cities on the

12
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Figure 7: Joint Distribution of City and Average Establishment Sizes: The Case
of Symmetric Industries

industrial property. The converse causality works if we intro-
duced endogenous self selection a la Hopenhayn (1992). This
allows us to more understand the interdependence of the size
distributions of cities and establishments.
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Appendix A.

The proof of Proposition 1 in the text proceeds as follows:

1. prove the uniqueness of the solution to the social planner’s
problem;

2. derive the first-order conditions (FOCs) for the social plan-
ner’s problem;

3. derive the FOCs in the case of market equilibrium; and

4. show correspondence between FOCs for the social plan-
ner’s problem and those for the market equilibrium.
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Figure 8: Size Distribution of Cities: The Case of Uniform Distribution of
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Step1: Uniqueness of the Solution to the Social Planner’s Prob-
lem

The social planner’s problem is expressed as follows:

max
{C jt ,I jt ,N jt}∞t=0

E0

∞∑
t=0

βt

Nt

J∑
j=1

α j ln
(
C jt

Nt

) (A.1)

s.t.

C jt + I jt ≤ µ jt(Ỹ jt − bÑ γ̃jt), (A.2)

Ỹ jt = M̃
σ
σ−1
jt

A jtK̃
θ j

jt Ñ1−θ j

jt

M̃ jt
− ϕ j

K̃ξ j

jt

M̃ξ j

jt

 , (A.3)

K jt ≥ µ jtK̃ jt, (A.4)
N jt ≥ µ jtÑ jt, (A.5)

J∑
j=1

N jt ≤ Nt, (A.6)

K j,t+1 ≤ Kω j

jt I1−ω j

jt . (A.7)

As mentioned in the text, the social planner solves the prob-
lem in three steps, each having a maximization problem. The
uniqueness of the solution is proved by showing that there ex-
ists a unique solution to the problem in each step.

First, the planner maximizes the output Ỹ jt of intermediate
goods in each city by changing the number M̃ jt of varieties. For
positive values of the capital stock K̃ jt and the labor input Ñ jt

of each city, there exists a unique positive level of M̃ jt, which
maximizes Ỹ jt, if ξ j < 1.

Second, the planner maximizes the net output µ jt(Ỹ jt − bÑ γ̃jt)
of each industry by changing the number µ jt of cities. Since
µ jt(Ỹ jt − bÑ γ̃jt) has the form given by (27), for positive values
of K jt and N jt, there is a unique positive value of µ jt which
maximizes µ jt(Ỹ jt −bÑ γ̃jt) if Assumption 1 in the text holds, i.e.,

13



γ̃ > σ/(σ − 1).
Finally, the social planner solves the reduced problem, which

is obtained by substituting the results of the above two steps into
the original problem:

max
{C jt ,I jt ,N jt}∞t=0

E0

∞∑
t=0

βt

Nt

J∑
j=1

α j ln
(
C jt

Nt

)
s.t.

C jt + I jt ≤ Ã jtK
θ̃ j

jt N1−θ̃ j

jt ,

J∑
j=1

N jt ≤ Nt,

K j,t+1 ≤ Kω j

jt I1−ω j

jt .

Since this is a convex problem, there exists a unique solution.

Step2: FOCs for the Social Planner’s Problem
For later use, we derive the FOCs for the original problem:

(A.1) - (A.7). They are expressed as follows:

λ̃RF
jt = β

tNtα j
1

C jt
, (A.8)

λ̃N
jt = λ̃

N
t , (A.9)

λ̃RF
jt = (1 − ω j)λ̃DK

jt

(
K jt

I jt

)ω j

, (A.10)

λ̃DK
jt = Et

λ̃K
j,t+1 + ω jλ̃

DK
j,t+1

(
I j,t+1

K j,t+1

)1−ω j
 ,

1
σ − 1

M̃
1
σ−1−1
jt A jtK̃

θ j

jt Ñ1−θ j

jt

=

(
σ

σ − 1
− ξ j

)
M̃

σ
σ−1−ξ j−1
jt ϕ jK̃

ξ j

jt ,

(A.11)

λ̃K
jt = λ̃

RF
jt

M̃
1
σ−1
jt θ jA jt

(
Ñ jt

K̃ jt

)1−θ j

− M̃
σ
σ−1−ξ j

jt ξ jϕ jK̃
ξ j−1
jt

 ,
(A.12)

λ̃N
jt = λ̃

RF
jt

M̃
1
σ−1
jt (1 − θ j)A jt

(
K̃ jt

Ñ jt

)θ j

− γ̃bÑ γ̃−1
jt

 ,(A.13)

λ̃K
jt K̃ jt + λ̃

N
jt Ñ jt

= λ̃RF
jt

(
M̃

1
σ−1
jt A jtK̃

θ j

jt Ñ1−θ j

jt − M̃
σ
σ−1−ξ j

jt ϕ jK̃
ξ j

jt − bÑ γ̃jt

)
,

(A.14)

where λ̃RF
jt , λ̃K

jt , λ̃
N
jt , λ̃

N
t and λ̃DK

jt are the Lagrange multipliers
corresponding to (A.2), (A.4), (A.5), (A.6) and (A.7), respec-
tively. The multiplier corresponding to the gross output Ỹ jt of
the intermediate good does not appear since we eliminate Ỹ jt by
substituting (A.3) into (A.2).

We eliminate λ̃K
jt and λ̃N

jt from the FOCs for ease of the com-
parison discussed later. This requires three steps. First, substi-
tuting (A.9) into (A.13), we obtain

λ̃RF
jt

M̃
1
σ−1
jt (1 − θ j)A jt

(
K̃ jt

Ñ jt

)θ j

− γ̃bÑ γ̃−1
jt

 = λ̃N
t . (A.15)

Second, substituting (A.12) into (A.11), we obtain

λ̃DK
jt = Et

λ̃RF
j,t+1

M̃
1
σ−1
j,t+1θ jA j,t+1

(
Ñ j,t+1

K̃ j,t+1

)1−θ j

−M̃
σ
σ−1−ξ j

j,t+1 ξ jϕ jK̃
ξ j−1
j,t+1

]
+ ω jλ̃

DK
j,t+1

(
I j,t+1

K j,t+1

)1−ω j
 .

(A.16)

Finally, substituting (A.12) and (A.13) into (A.14), we obtain

(γ̃ − 1)bÑ γ̃jt = M̃
σ
σ−1−ξ j

jt (1 − ξ j)ϕ jK̃
ξ j

jt . (A.17)

Step3: FOCs in the Case of a Market Equilibrium
Since the FOCs for problems of both final good firms and

intermediate good firms are derived in the text, only those for
developers’ and households’ problems are discussed here.

(i) Developer
To derive the FOCs for the developer’s problem, it is conve-

nient to express the developer’s profit TR jt − T n
jtÑ jt −

τk
jtr jt

P jt
K̃ jt −

T M
jt M̃ jt as a function of an appropriately chosen set of control

variables. Thus, we first consider the set of control variables.
Then, we derive the FOCs.

The set of control variables is the city-level capital stock K̃ jt,
labor Ñ jt, and the number M̃ jt of establishments. The plan-
ner can control these variables through subsidies (τk

jt,T
n
jt,T

M
jt ).

Note that these are sufficient statistics for other control variables
of the developer: the establishment-level capital stock k jt, labor
n jt and the individual price level p jt. k jt and n jt are determined
by their definitions, i.e., k jt = K̃ jt/M̃ jt and n jt = Ñ jt/M̃ jt. p jt

is determined by the optimal pricing rule of intermediate good
firms. Note also that the social planner takes the aggregate price
P jt, factor prices (r jt,w jt) and the net income Ω jt as given. This
is because these are determined by competition between devel-
opers and free mobility of capital and labor.

The developer’s profit is expressed as follows by using defi-
nitions, k jt = K̃ jt/M̃ jt and n jt = Ñ jt/M̃ jt, (1), (2), (3), (6), (10),
(11), (12), (13), and (14) in the text:

M̃
1
σ−1
jt A jtK̃

θ j

jt Ñ1−θ j

jt − ϕ jM̃
( σ
σ−1−ξ j)

jt K̃ξ j

jt

−bÑ γ̃jt −Ω jtÑ jt −
r jt

P jt
K̃ jt. (A.18)

Given Ω jt and r jt/P jt, this is a function of (K̃ jt, Ñ jt, M̃ jt).
Therefore, the FOCs are

r jt

P jt
= M̃

1
σ−1
jt θ jA jt

(
Ñ jt

K̃ jt

)1−θ j

− M̃
σ
σ−1−ξ j

jt ξ jϕ jK̃
ξ j−1
jt ,

Ω jt = M̃
1
σ−1
jt (1 − θ j)A jt

(
K̃ jt

Ñ jt

)θ j

− γ̃bÑ γ̃−1
jt , (A.19)

1
σ − 1

M̃
1
σ−1−1
jt A jtK̃

θ j

jt Ñ1−θ j

jt

=

(
σ

σ − 1
− ξ j

)
ϕ jM̃

σ
σ−1−ξ j−1
jt K̃ξ j

jt . (A.20)
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Substituting these FOCs into the objective function (A.18)
gives the maximized profit:

(γ̃ − 1)bÑ γ̃jt − M̃
σ
σ−1−ξ j

jt (1 − ξ j)ϕ jK̃
ξ j

jt ,

which must be zero in equilibrium because of free entry and
exit:

(γ̃ − 1)bÑ γ̃jt = M̃
σ
σ−1−ξ j

jt (1 − ξ j)ϕ jK̃
ξ j

jt .

(ii) Household
The household problem is expressed as follows:

max
{C jt ,I jt ,N jt} j∈{1,2,··· ,J},t∈R+

E0

∞∑
t=0

βt

Nt

J∑
j=1

α j ln
(
C jt

Nt

)
s.t.

J∑
j=1

P jt[C jt + I jt + (ACC jt + AR jt)N jt]

≤
J∑

j=1

(w jtN jt + r jtK jt + P jtT n
jtN jt), (A.21)

J∑
j=1

N jt ≤ Nt, (A.22)

K j,t+1 ≤ Kω j

jt I1−ω j

jt . (A.23)

The household takes prices (P jt,w jt, r jt), the average commut-
ing cost ACC jt, the average rent AR jt and the transfer T n

jt as
given.

Therefore, the FOCs are

λBC
t P jt = β

tNtα j
1

C jt
, (A.24)

λN
t = λ

BC
t P jt

[
w jt

P jt
+ T n

jt − (ACC jt + AR jt)
]
, (A.25)

λBC
t P jt = (1 − ω j)λDK

jt

(
K jt

I jt

)ω j

, (A.26)

λDK
jt = Et

λBC
t+1P j,t+1

r j,t+1

P j,t+1
+ ω jλ

DK
j,t+1

(
I j,t+1

K j,t+1

)1−ω j
 ,

where λBC
t , λN

t and λDK
jt are the Lagrange multipliers corre-

sponding to (A.21), (A.22) and (A.23), respectively.

Step4: Correspondence between FOCs
In the following, it is shown that the FOCs for the social plan-

ner’s problem is derived from the definition of a market equi-
librium including the FOCs for agents’ problems. This requires
two steps: First, we relate the Lagrange multipliers as follows:

λ̃RF
jt = λBC

t P jt, (A.27)

λ̃DK
jt = λDK

jt , (A.28)

λ̃N
t = λN

t . (A.29)

Second, we use these relationships to derive each of the
FOCs for the planner’s problem. Specifically, they consist of

(A.8), (A.10), (A.11), (A.15), (A.16), and (A.17) as well as
the resource constraints: (A.2) - (A.7) with equality. Since the
derivation of the resource constraints is immediate, we discuss
about only (A.8), (A.10), (A.11), (A.15), (A.16) and (A.17).

• (A.8) is obtained by substituting (A.27) into (A.24).

• (A.10) is obtained by substituting (A.27) and (A.28) into
(A.26).

• (A.11) is equivalent to (A.20).

• (A.15) is obtained by substituting (14) in the text, (A.19)
and (A.29) into (A.25).

• (A.16) is obtained by substituting (A.19), (A.27) and
(A.28) into (A.27).

• (A.17) is equivalent to (A.21).
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