Sequential $\boldsymbol{\varepsilon}$ -Contamination with Learning^{*}

Hiroyuki Kato[†]

Department of Management and Economics, Kaetsu University

Kiyohiko G. Nishimura National Graduate Institute for Policy Studies (GRIPS) and CARF, University of Tokyo

and

Hiroyuki Ozaki Faculty of Economics, Keio University

Abstract

The ε -contamination has been studied extensively as a convenient and operational specification of Knightian uncertainty. However, it is formulated in a static, one-shot economic environment. This paper extends this concept into a dynamic and sequential framework, allowing learning and guaranteeing time consistency of intertemporal decision. We develop the theory of the *rectangular* ε -contamination, which can be represented by a sequence of ε 's that "contaminates" the conditional principal probability measure. We then compare this sequential (thus closed-loop) rectangular ε -contamination with the initial-period one-shot (thus open-loop) ε -contamination, which is a straightforward extension of the static ε -contamination.

JEL codes: C61, D81, D83

Keywords: Knightian uncertainty, Open-loop ε -contamination, Rectangular ε -contamination, Learning

^{*}We appreciate very helpful comments given by the participants of workshop at Tohoku University and Decision Theory Workshop at Hitotsubashi University. Financial supports to Nishimura from JSPS KAKEN(S) #18H05217 is gratefully acknowledged. Ozaki's work is partially supported by JSPS KAKENHI Grant Number JP19K01550.

[†]Corresponding Author.