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Abstract

For a two-player repeated favor-exchange game with private information, I
compare the rates at which the chip-strategy equilibrium and the optimal perfect
public equilibrium achieve the efficient payoff as the discount factor δ tends to 1. I
show that (i) the convergence rate for the optimal perfect public equilibrium is no
smaller than (1 − δ)1/2, and (ii) that for the optimal chip-strategy equilibrium is no
greater than (1 − δ)1/2, where the number of total chips grows at rate (1 − δ)−1/2.
In this sense, the chip-strategy equilibrium approximately achieves efficiency at
the optimal rate (1 − δ)1/2.
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1 Introduction

In the literature on repeated games, it is well known that the efficient payoffs are asymp-
totically achieved in equilibrium as the discount factor δ tends to 1 (e.g., Fudenberg and
Maskin (1986), Fudenberg et al. (1994)). For games under imperfect monitoring, the
asymptotic efficiency is often proved by using the self-generation technique of Abreu
et al. (1990) rather than explicitly constructing equilibrium strategies.1 By contrast,

∗Acknowledgement. This work is supported by JSPS KAKENHI Grant Number 19J21644. I
would like to thank Daisuke Oyama, Michihiro Kandori, and Satoru Takahashi for their advice and
encouragement. All remaining errors are my own.

†Graduate School of Economics, University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan,
kawahara-takeshi400@g.ecc.u-tokyo.ac.jp

1For games with pure strategies, compact actions sets, and deterministic public signals, Laclau
and Tomala (2017) characterize the equilibrium payoff set as δ reaches 1, by constructing equilibrium
strategies based on cooperation, punishments, and rewards.
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Olszewski and Safronov (2018) study specific equilibrium strategies by focusing on
the chip strategies introduced by Möbius (2001), which represent a simple form of
reciprocity. They show that chip-strategy equilibria asymptotically achieve the effi-
cient payoff with a sufficiently large number of chips, in a class of symmetric repeated
games with private information. As Abdulkadiroglu and Bagwell (2012, 2013) show,
however, for some parameter values there are other equilibria that Pareto-dominate the
chip-strategy equilibrium for a fixed discount factor.

In this paper, I study the performance of the chip-strategy equilibrium, relative
to the optimal perfect public equilibrium, in terms of the convergence rate at which
these equilibria achieve the efficient payoff as δ tends to 1. I consider a two-player
favor-exchange game with private information, which is representative of the class of
games considered by Olszewski and Safronov (2018). The main result of the current
paper is that the chip-strategy equilibrium is optimal in the convergence rate. Precisely,
I show that the efficiency loss for the chip-strategy equilibrium vanishes at the same
rate as that for the optimal equilibrium, and the common rate of convergence is of
order (1 − δ)1/2. In this sense, the chip-strategy equilibrium approximately achieves
the efficient payoff at the optimal rate.

The above result follows from two propositions. I show in Proposition 1 that
the efficiency loss for the optimal perfect public equilibrium vanishes at rate at least
(1 − δ)1/2 (lower bound), and in Proposition 2 that the efficiency loss for the (optimal)
chip-strategy equilibrium vanishes at rate at most (1 − δ)1/2 (upper bound). Proposition
1 follows from a more general result, Theorem A.1, that in any repeated game under
imperfect public monitoring, if the monitoring structure satisfies a certain weak form
of full support condition, which holds in the favor-exchange game, an extremal payoff
vector is reached by equilibria at rate at least (1 − δ)1/2. To prove Proposition 2, I
explicitly solve a recursive formula that characterizes the value of each chip holding,
and obtain a closed form expression of the value function. This enables me to derive the
divergence rate (1 − δ)−1/2 of the optimal number of chips, and in turn the convergence
rate of the efficiency loss for the chip-strategy equilibrium.

Favor-exchange games and chip strategies have been investigated in the literature
on repeated games with private information. Möbius (2001) introduces and studies
chip strategies in a two-player favor-exchange game with private information. He fo-
cuses on the chip strategy with only one chip and shows that it sustains cooperation
on a network where agents interact only rarely with each other. As already mentioned
earlier, Olszewski and Safronov (2018) show that the simple chip-strategy equilibria
approximately achieve the efficient payoff as δ → 1 in a class of symmetric repeated
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games with private information. In particular, in their Proposition 1, they prove the
asymptotic efficiency of the chip-strategy equilibrium in the favor-exchange game. In
their proof, they apply the implicit function theorem to the recursive formula character-
izing the value for each chip holding and obtain a first-order approximation of the value
function, while I explicitly solve the formula and derive a closed form expression of the
value function. For fixed discounting, it is known that the chip-strategy equilibrium
is not optimal in general. Hauser and Hopenhayn (2008) present numerical examples
in which the optimal equilibrium is strictly superior to the chip-strategy equilibrium.
Abdulkadiroglu and Bagwell (2012, 2013) study more sophisticated favor-exchange
equilibria where the size of a favor owed may decline over time, and show that these
equilibria perform better than the simple chip-strategy equilibrium for some parameter
values. The result of the current paper implies that these sophisticated equilibria do
not improve the rate of convergence.

The rate of convergence in non-zero-sum discounted repeated games is first studied
by Hörner and Takahashi (2016). They provide tight bounds on the rate of convergence
of the equilibrium payoff sets for both the cases of perfect and imperfect monitoring.
For the lower bound, they show in Proposition 4 that in a repeated prisoner’s dilemma
under imperfect public monitoring, the distance between the equilibrium payoff set
and the full cooperation payoff vector vanishes at rate at least (1 − δ)1/2. Theorem A.1
in the current paper generalizes their result as follows. First, Theorem A.1 applies to
any repeated game under imperfect public monitoring beyond the prisoner’s dilemma.
Second, Theorem A.1 weakens the full support condition on the monitoring structure
in Hörner and Takahashi (2016, Proposition 4) to accommodate the favor-exchange
game, which does not satisfy their condition. For the upper bound, they show in their
Proposition 8 that, for games under imperfect public monitoring, the distance between
the equilibrium payoff set and a strictly individually rational payoff vector vanishes at
rate at most (1 − δ)1/2. They consider the entire set of perfect public equilibria and rely
on the self-generation technique, while I focus on the specific class of chip strategies
and obtain the same rate (1 − δ)1/2 by using the closed form expression of the value
function.

The paper is organized as follows. The rest of this section introduces the notations
on the rate of convergence/divergence. Section 2 describes the favor-exchange model
and the basic properties of the chip strategies. Section 3 states the results. Section 4
concludes the paper. Finally, the proofs of the results are presented in the Appendix.
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Notation

I here introduce the notations for the rate of convergence/divergence. For a nonempty
set X ⊂ R, consider nonnegative-valued functions f ,g : X → R+. Let x̄ be an arbitrary
point in the closure of X . I write

• f (x) = O(g(x)) as x → x̄ if there exist C > 0 and ε > 0 such that f (x) ≤ Cg(x)
for any x ∈ X with |x − x̄ | < ε;

• f (x) = Ω(g(x)) as x → x̄ if there exist c > 0 and ε > 0 such that f (x) ≥ cg(x)
for any x ∈ X with |x − x̄ | < ε; and

• f (x) = Θ(g(x)) as x → x̄ if f (x) = O(g(x)) and f (x) = Ω(g(x)) as x → x̄.

When limx→x̄ f (x) = limx→x̄ g(x) = 0, I say that f (x) vanishes at rate at most
(resp. at rate at least, at the same rate as) g(x) as x → x̄ if f (x) = O(g(x)) (resp.
Ω(g(x)), Θ(g(x))) as x → x̄. When limx→x̄ f (x) = limx→x̄ g(x) = ∞, I say that f (x)
grows at rate at most (resp. at rate at least, at the same rate as) g(x) if f (x) = O(g(x))
(resp. Ω(g(x)), Θ(g(x))) as x → x̄. I omit the phrase “as x → x̄” if x̄ is evident from
the context.

Let {an}, {bn} be sequences of nonnegative real numbers. I write

• an = O(bn) if there exist C > 0 and N ∈ N such that an ≤ Cbn for all n ≥ N;

• an = Ω(bn) if there exist c > 0 and N ∈ N such that an ≥ cbn for all n ≥ N; and

• an = Θ(bn) if an = O(bn) and an = Ω(bn).

When limn an = limn bn = 0, I say that an vanishes at rate at most (resp. at
rate at least, at the same rate as) bn if an = O(bn) (resp. Ω(bn), Θ(bn)). When
limn an = limn bn = ∞, I say that an grows at rate at most (resp. at rate at least, at the
same rate as) bn if an = O(bn) (resp. Ω(bn), Θ(bn)).

2 Model

2.1 Favor-Exchange Model

I consider the two-player infinitely repeated favor-exchange game analyzed by Ab-
dulkadiroglu and Bagwell (2012) and Olszewski and Safronov (2018, Section 2.1),
which is a discrete time version of the model of Möbius (2001). In the stage game,
either one of the following three events occurs independently across time: (i) only
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player 1 gets a good, (ii) only player 2 gets a good, and (iii) neither gets a good. The
former two events occur with probability p ∈ (0,1/2) each, and the latter event occurs
with the remaining probability 1 − 2p > 0. Each player is privately informed whether
he gets a good (state 1) or not (state 0). Thus, if a player does not receive a good, then
he cannot observe whether his partner receives a good or not. For each i ∈ {1,2}, let
Zi B {0,1} denote the set of privately observed states. If a player gets a good, he can
consume the good (action 0) or give it to his partner (action 1). Otherwise, he has no
action to choose. For each i ∈ {1,2}, let Ai B {0,1} denote the set of state-contingent
actions/stage-game strategies of player i. That is, “ai = 0” (resp. “ai = 1”) mean that
player i plans to consume the good (resp. give it to his partner) when he gets a good.

If a player consumes a good, then he gets a payoff of 1 and his partner gets a payoff
of 0. If he gives the good to the partner, then the player gets a payoff of 0 and the
partner gets a payoff of γ. Assume γ > 1, that is, the transfer is value-enhancing. For
each i ∈ {1,2} and a ∈ A, where A B A1 × A2, let gi(a) denote player i’s expected
payoff when players follow the action profile a;

gi(a) = p(1 − ai) + pγa j,

where j ∈ {1,2} and j , i. Define a function g : A → R2 by g(a) = (g1(a),g2(a)) for
each a ∈ A. Let

F B CH g(A)

denote the set of feasible payoff vectors.2

There are three publicly observable outcomes: neither player transfers a good
(outcome 0), player 1 transfers a good (outcome 1), and player 2 transfers a good
(outcome 2). Let Y denote the set of all publicly observable outcomes, that is,

Y B {0,1,2} .

For each a ∈ A and y ∈ Y , let π(y | a) denote the probability with which y occurs
when the players follow a stage-game strategy profile a:

π(0 | a) = p(1 − a1) + p(1 − a2) + (1 − 2p)
= 1 − pa1 − pa2,

π(1 | a) = pa1,

π(2 | a) = pa2.

2We let CH S refer to the convex hull of a set S ⊂ RN , where N ∈ N.
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Note that outcome 0 occurs if either player 1 gets a good and consume it, player 2 gets
a good and consume it, or neither player gets a good.

The game begins at period t = 1 and continues in an infinite horizon. A public
history at the beginning of period t is a sequence ht = (y1, . . . , yt−1). Let H1 B {∅}.
The set of public histories at the beginning of period t ≥ 2 is Ht = Y t−1. Let
H B

⋃
t≥1 Ht denote the set of all public histories. A private history for player i at

the beginning of period t is a sequence ht
i = (a1

i , z
1
i , y

1, . . . ,at−1
i , zt−1

i , yt−1). Similarly,
define H1

i B {∅}, Ht
i B Ct−1

i , and Hi B
⋃

t≥1 Ht
i . A (repeated-game) strategy for

player i is a map σi : Hi → ∆(Ai). A strategy profile yields a probability distribution
over histories in the obvious way. Each player tries to maximize his expected sum of
the discounted stage game payoffs normalized by the factor of 1− δ, where δ ∈ [0,1) is
the common discount factor. The payoff of player i when the players follow a repeated
game strategy profile σ is defined by

Eσ

[ ∞∑
t=1

(1 − δ)δt−1gi(at)
]
,

where Eσ represents the expectation calculated from a strategy profile σ. A public
strategy is a (repeated game) strategy that depends only on public history. That is, a
public strategy is a map σi : H → ∆(Ai). A perfect public equilibrium is a profile of
public strategies such that, given any period t and public history ht , the strategy profile
is a Nash equilibrium from that period on. In this paper, I will focus on perfect public
equilibria.

For each δ ∈ [0,1), let E f(δ) be the (compact) set of perfect public equilibrium
payoff vectors, and W∗(δ) be the maximum average payoff achieved by perfect public
equilibria when the common discount factor is δ. That is,

W∗(δ) B max
(u,v)∈E f(δ)

[
1
2

u +
1
2
v

]
.

By definition, {W∗(δ) | δ < 1} is bounded above by the efficient (average, ex ante)
payoff W B pγ.

2.2 Chip Strategies

I study the performance of the chip strategy, which was first introduced by Möbius
(2001) and further studied by Olszewski and Safronov (2018). Let n be a positive
integer. Then, the n-chip strategies are defined as follows. At the beginning of
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each period, player i ∈ {1,2} (implicitly) holds ki chips, where ki ∈ {0, . . . ,2n} and
k1 + k2 = 2n. If player i gets a good and k1 < 2n, then he gives the good to his
partner j , i and the partner j gives a chip to player i in return. If the player does not
get a good or if he gets a good but ki = 2n, then he consumes the good himself and
no chip is transferred. At the initial period, each player holds n chips. When a pair
of n-chip strategies constitutes a perfect public equilibrium, I call this equilibrium an
n-chip-strategy equilibrium.

For δ < 1, n ∈ N, and k ∈ {0, . . . ,2n}, let Vn
k (δ) denote the value of holding k

chips when the players follow the n-chip strategies. Since each player holds n chips at
the initial period, the average payoff, denoted by Wn

c (δ), can be expressed as

Wn
c (δ) =

1
2

Vn
n (δ) +

1
2

Vn
n (δ) = Vn

n (δ).

For each δ < 1, let W∗
c (δ) denote the maximum average payoff achieved by the chip-

strategy equilibria. That is,
W∗

c (δ) = max
n

Wn
c (δ),

where the maximum is taken over all n-chip-strategy equilibria when the discount
factor is δ.3,4 By definition, W∗

c (δ) ≤ W∗(δ) for all δ < 1.
Given a fixed discount factor δ < 1, there exists a tradeoff between efficiency and

incentives for the chip strategies; the average payoff Wn
c (δ) is increasing in the number

n of chips (whether or not the chip strategies constitute an equilibrium), while the
incentive constraint becomes tighter as n increases. To see the efficiency part, consider
a situation where players play the chip strategies with 2n total chips. Each player tries
to exchange favors when his partner holds at least one chip, while he consumes the good
himself (or equivalently punishes the partner) when he holds all the chips. Thus, the
stage game average payoffs are pγ = W and p(γ+1)/2 < W for (k1, k2) , (0,2n), (2n,0)
and for (k1, k2) = (0,2n), (2n,0), respectively. As the number n of chips increases, the
time that players spends in (0,2n) or (2n,0) decreases, and hence the average payoff
Wn

c (δ) increases and approaches to W .5

Next, let us consider the incentive constraints for the n-chip strategies to constitute
an equilibrium. It is sufficient to check, by the one-shot deviation principle, whether

3When no chip-strategy equilibrium is sustained at δ < 1, let W∗
c (δ) = p, which is the average

payoff when each player consumes a good whenever possible.
4As subsequently discussed in this section, for each δ < 1, there is an upper bound on the number n

of chips such that n-chip strategies constitute an equilibrium, and hence the maximum is well defined.
5Formally, for each δ < 1 the average payoff Wn

c (δ) is (strictly) increasing in the number n of chips
and limn→∞ Wn

c (δ) = W, which follows from the closed form expression of Wn
c (δ) in (20), Appendix

C.1.
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there is a profitable deviation from the prescribed (stage game) strategy. For k = 2n,
a deviation is obviously not profitable, since no chip is transferred for any action. The
incentive constraint for a player holding k ∈ {0, . . . ,2n − 1} chips is as follows:

δVn
k+1(δ) ≥ (1 − δ) + δVn

k (δ), (1)

where the left and the right-hand sides represent the payoffs from giving a good to his
partner and from consuming a good himself, respectively, conditional on the event that
he gets a good. Condition (1) gives an upper bound on the number n of chips such that
the n-chip strategies constitute an equilibrium. To see this, consider the incentive for
a player with k = 2n − 1. If he consumes a good, then he obtains a payoff of 1 and
continues to hold 2n− 1 chips. If he gives the good to his partner, then he gets a payoff
of 0 and will hold 2n chips in the next period. Since punishment is applied when k = 0,
a player is likely to be punished earlier if he deviates from the chip strategy. However,
as n increases, the loss from the future punishment vanishes and is dominated by the
gain from the deviation. Therefore, the incentive constraint cannot be sustained for
large n. For each δ < 1, let n∗(δ) denote the maximum number n of chips such that the
n-chip strategies constitute an equilibrium when the discount factor is δ.

3 Results

There are some facts known about W∗(δ) and W∗
c (δ). The first is that the optimal

perfect public equilibrium asymptotically achieves the efficient payoff. That is,

lim
δ→1

W∗(δ) = W .

This follows from Fudenberg et al. (1994); for example, the Nash-threat folk theorem
(Fudenberg et al. (1994, Theorem 6.1)) applies, since the action profile a = (1,1) has
pairwise full rank.

Second, Olszewski and Safronov (2018, Proposition 1) show that the chip-strategy
equilibrium asymptotically achieves the efficient payoff;

lim
δ→1

W∗
c (δ) = W .

Third, the optimal perfect public equilibrium does not exactly achieve the efficient
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payoff for any fixed discount factor δ < 1 (Proposition A.1 in Appendix A.1). Thus,

0 < W − W∗(δ) ≤ W − W∗
c (δ).

Abdulkadiroglu and Bagwell (2012) show that for some set of parameter values, a
“more sophisticated” favor-exchange equilibrium Pareto-dominates the chip-strategy
equilibrium, and hence the weak inequality in fact holds with a strict inequality.

I show that the efficiency loss W − W∗
c (δ) vanishes at the same rate as W − W∗(δ),

and the common rate of convergence is of order (1 − δ)1/2.

Theorem 1.
W − W∗

c (δ) = Θ
(
(1 − δ)1/2

)
as δ → 1,

and
W − W∗(δ) = Θ

(
(1 − δ)1/2

)
as δ → 1.

In other words, the chip-strategy equilibrium achieves the efficient payoff W at
the optimal rate, which is of order (1 − δ)1/2. In particular, regarding the result of
Abdulkadiroglu and Bagwell (2012), Theorem 1 implies that their “more sophisticated”
strategies do not improve the rate of convergence for the efficiency loss.

I prove Theorem 1 by showing that (i) W −W∗(δ) vanishes at rate at least (1 − δ)1/2,
and (ii) W −W∗

c (δ) vanishes at rate at most (1 − δ)1/2. Formally, I prove the following
two propositions:

Proposition 1.
W − W∗(δ) = Ω

(
(1 − δ)1/2

)
as δ → 1.

Proposition 2.
W − W∗

c (δ) = O
(
(1 − δ)1/2

)
as δ → 1.

Propositions 1 and 2 say that there exist κ1, κ2 > 0 and δ < 1 such that for all
δ ∈ (δ,1) we have W −W∗(δ) > κ1(1 − δ)1/2 and W −W∗

c (δ) < κ2(1 − δ)1/2. Since the
inequality W − W∗(δ) ≤ W − W∗

c (δ) always holds, we have

κ1(1 − δ)1/2 ≤ W − W∗(δ) ≤ W − W∗
c (δ) ≤ κ2(1 − δ)1/2

for all δ ∈ (δ,1), which implies Theorem 1. In the remainder of this section, I will
make remarks on Propositions 1 and 2. The proofs are provided in the Appendix.

To prove Proposition 1, I show in Theorem A.1, Section A, that for any game
satisfying a weak form of the full support condition, an extremal payoff vector (not
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necessarily efficient) is reached by equilibria at rate at least (1 − δ)1/2. Formally,
Theorem A.1 asserts that in any repeated game under imperfect public monitoring,
if an extremal payoff vector is not supported in a stage-game Nash equilibrium and
the corresponding pure action profile induces a full support distribution over public
signals, then the distance between the payoff vector and the set of perfect public
equilibrium payoff vectors is of order at least (1 − δ)1/2. The favor-exchange game in
the current paper satisfies the assumptions in Theorem A.1; the extremal payoff vector
(W,W) = g(1,1) is not supported in a stage-game Nash equilibrium, since each player i

has a dominant strategy ai = 0 in the stage game, and the corresponding action profile
(a1,a2) = (1,1) induces a full support distribution, that is, supp π( · | 1,1) = {0,1,2} =
Y . Proposition 1 follows from Theorem A.1 (more precisely Corollary A.2), since the
efficiency loss W − W∗(δ) is of the same order as the distance between the extremal
vector (W,W) and the equilibrium payoff set E f(δ) (Lemma B.1).

Theorem A.1 generalizes Proposition 4 of Hörner and Takahashi (2016) to accom-
modate the favor-exchange game, and in fact its proof utilizes the idea of their proof.
Their Proposition 4 shows that in a repeated prisoner’s dilemma under imperfect public
monitoring with full support, the distance between the set of perfect public equilibrium
payoff vectors and the full cooperation payoff vector vanishes at rate at least (1 − δ)1/2.
Note that Theorem A.1 in the current paper applies to any repeated game beyond
the prisoner’s dilemma, and to any monitoring structure such that the pure action
profiles associated with the targeted payoff vector induce full support distributions,
while Proposition 4 in Hörner and Takahashi (2016) requires all pure action profiles
to induce full support distributions. In fact, the favor-exchange game does not satisfy
the full support condition of their Proposition 4, since for each player i, the outcome
y = i, which means that player i transfers a good to his partner, will never realize if he
chooses the (stage-game) strategy ai = 0. On the other hand, as already stated above,
the favor-exchange game does satisfy the weakened condition of Theorem A.1.

Proposition 2 is proved in three steps. First, I derive a closed form expression of
Vn

k (δ), the value of holding k chips when players follow the n-chip strategies (Section
C.1). This provides a closed form expression of the efficiency loss W −Wn

c (δ). Second,
with the closed form expression of Vn

k (δ), I derive the divergence rate of n∗(δ), the
maximum number n of chips which can be supported in chip-strategy equilibria when
the discount factor is δ. Formally, I show in Lemma C.4 that

n∗(δ) = Ω
(

1
(1 − δ)1/2

)
.
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Third, I derive the convergence rate of W −W∗
c (δ) by using the closed form expression

of the efficiency loss W − Wn
c (δ) and the divergence rate of n∗(δ).

The above analysis refines that of Olszewski and Safronov (2018) used for their
asymptotic efficiency result. They show that for any ε > 0 there exist n ∈ N and
δ < 1 such that for any δ > δ, the n-chip strategies constitute an equilibrium and
satisfy Wn

c (δ) > W − ε. In their Lemma 2 for the above result, they prove that for any
number n of chips there exists δn < 1 such that for every δ > δn, the n-chip strategies
constitute an equilibrium, which in particular implies that n∗(δ) → ∞ as δ → 1. In
the proof of Lemma 2, they obtain a first-order approximation of the values Vn

k (δ)
near δ = 1 by applying the implicit function theorem to the recursive equation of the
values Vn

k (δ) (Equation (13) in Section C.1 in the present paper). In the present paper,
instead, I derive a closed form expression of Vn

k (δ) by solving the recursive equation
(13) explicitly. This enables me to obtain the divergence rate of n∗(δ), and in turn the
convergence rate of W − W∗

c (δ).
My analysis also enables me to identify the leading coefficients for n∗(δ) and

W − W∗
c (δ). Formally, n∗(δ) and W − W∗

c (δ) are in fact written as

n∗(δ) = cp,γ(1 − δ)−1/2 + o
(
(1 − δ)−1/2),

and

W − W∗
c (δ) = Cp,γ(1 − δ)1/2 + o

(
(1 − δ)1/2

)
,

where I derive the leading coefficients cp,γ and Cp,γ explicitly (Proposition D.1).

4 Conclusion

I study the performance of the chip-strategy equilibrium, relative to the optimal perfect
public equilibrium, in terms of the rate at which these equilibria achieve the efficient
payoff as the discount factor δ tends to 1. The main result of this paper is that the
chip-strategy equilibrium is optimal in the convergence rate, that is, the chip-strategy
equilibrium achieves the efficient payoff at the same rate as the optimal equilibrium.
Formally, I show in Proposition 1 that W − W∗(δ), the efficiency loss for the optimal
equilibrium, vanishes at rate at least (1 − δ)1/2, and in Proposition 2 that W − W∗

c (δ),
the efficiency loss for the chip-strategy equilibrium, vanishes at rate at most (1 − δ)1/2.

The main results, in fact, extend, with some modification, to the asymmetric
case in which a favor opportunity arrives with unequal probabilities for two players.
For this case, Olszewski and Safronov (2018) show that the chip strategies are not
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asymptotically efficient, that is, the efficiency loss for the chip strategies is uniformly
bounded away from 0 for any δ < 1, and that asymptotic efficiency is achieved by
random chip strategies where players decide whether or not to give a chip in return for
a favor depending on public randomization outcomes. An appropriate modification of
the proof of Proposition 2 in the present paper shows that the random-chip-strategy
equilibrium also achieves efficiency at rate at most (1 − δ)1/2. For Proposition 1
and Theorem A.1, I have to modify the proof of Theorem A.1 to accommodate
perfect public equilibria with public randomization, by which it is shown that the
optimal equilibrium still achieves efficiency at rate at least (1 − δ)1/2.6 Hence, public
randomization does not improve the rate of convergence.

A possible future research direction is investigating whether or not the results
of this paper still hold in the class of games considered by Olszewski and Safronov
(2018), in which the chip-strategy equilibria are shown to be asymptotically efficient.
In fact, all the results in the present paper should hold in this class if we assume that
types are i.i.d. over time (but may be correlated across players) instead of following a
Markov process; the techniques used in the proofs of Propositions 1, 2, and Theorem
A.1 should be applicable to the class of games. The remaining work is to explore the
case in which types follow a Markov process.

A Lower Bound on the Rate of Convergence for Gen-
eral Games

A.1 General Model of Repeated Games under Imperfect Public
Monitoring

In this section, I will formally state and prove Theorem A.1. To this end, I will
introduce a general model of repeated games under imperfect public monitoring.

There are N ≥ 2 players. Each player i has a nonempty finite set Ai of actions, and
a stage game payoff function gi : A → R, where A B ×i Ai. Define g : A → RN by
g(a) = (g1(a), . . . ,gN (a)) for each a ∈ A. Let F B CH g(A) denote the set of feasible
payoff vectors. Monitoring is imperfect and public. Let Y be a nonempty and finite
set of public signals. For each a ∈ A and y ∈ Y , let π(y | a) denote the probability
with which the public signal y realizes when players follow the action profile a. For
each probability distribution α ∈ ∆(A), define g(α) and π( · | α) as usual. For each

6The modified proofs are available upon request.
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mixed action profile α ∈ ×i∆(Ai), with a slight abuse of notation, denote again by α
the resulted probability distribution over A.

The game begins at period t = 1 and continues in an infinite horizon. A public
history at the beginning of period t is a sequence ht = (y1, . . . , yt−1). Let H1 B {∅}.
The set of public histories at the beginning of period t ≥ 2 is Ht B Y t−1. Let
H B

⋃
t≥1 Ht denote the set of all public histories.

A private history for player i at the beginning of period t is a sequence ht
i =

(a1
i , y

1, . . . ,at−1
i , yt−1). Similarly, define H1

i B {∅}, Ht
i B (Ai × Y )t−1, and Hi B⋃

t≥1 Ht
i . A (repeated-game) strategy for player i is a map σi : Hi → ∆(Ai). A strategy

profile yields a probability distribution over histories in the obvious way. The payoff
of player i when players follow a repeated game strategy profile σ is defined by

Eσ

[ ∞∑
t=1

(1 − δ)δt−1gi(at)
]
,

where Eσ represents the expectation calculated from a strategy profile σ. A public
strategy is a (repeated game) strategy that depends only on public history. That is, a
public strategy is a map σi : H → ∆(Ai). A perfect public equilibrium is a profile of
public strategies such that, given any period t and public history ht , the strategy profile
is a Nash equilibrium from that period on. For each δ ∈ [0,1), let E(δ) be the set of
payoff vectors supported in perfect public equilibria.

The following proposition provides a sufficient condition for a payoff vector not to
be supported in any perfect public equilibrium:

Proposition A.1 (A modification of Theorem 6.5 of Fudenberg et al. (1994)). Let v̄
be an extremal payoff vector of F. If for each mixed action profile α ∈ ×i∆(Ai) with
g(α) = v̄ there exist a player j and an action a′j ∈ A j such that (i) g j(a′j, α− j) > g j(α)
and (ii) supp π( · | a′j, α− j) ⊂ supp π( · | α), then

v̄ < E(δ) (2)

for each δ < 1.7

Proposition A.1 modifies Theorem 6.5 of Fudenberg et al. (1994). They incorrectly
assert that for an extremal payoff vector v̄ ∈ F, if for each pure action profile a ∈ A with
g(a) = v̄ there exist a player j and an action a′j ∈ A j such that (i) g j(a′j,a− j) > g j(a)
and (ii) supp π( · | a′j,a− j) ⊂ supp π( · | a), then v̄ < E(δ) for all δ < 1. Their original

7For each probability distribution π over a finite set, denote its support by supp π.
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LL LR RL RR

TT 3,3 3,3 0,4 0,0

T B 3,3 3,3 0,0 0,4

BT 4,0 0,0 0,0 0,0

BB 0,0 4,0 0,0 0,0

(a) The payoff matrix.

v1

v2

0 4

v̄ = (3,3)

4

F

(b) The set of feasible payoff vectors.

Fig. 1: A counter example for Theorem 6.5 in Fudenberg et al. (1994).

assumptions do not exclude the possibility that an extremal payoff vector v̄ is supported
in a stage-game Nash equilibrium and hence in a perfect public equilibrium. Consider
the stage game in Fig. 1 under imperfect public monitoring with full support, that is,
π( · | a) = Y for all a ∈ A. The extremal payoff vector v̄ = (3,3) satisfies the original
assumptions of Fudenberg et al. (1994, Theorem 6.5); for each pure action profile
a ∈ A with g(a) = v̄ = (3,3), there exist a player j and an action a′j ∈ A j such that
g j(a′j,a− j) > g j(a) and supp π( · | a′j,a− j) ⊂ supp π( · | a). However, it is supported in
a stage-game Nash equilibrium ((1/2)TT + (1/2)T B, (1/2)LL + (1/2)LR), and hence
is a perfect public equilibrium payoff vector for all δ < 1.

Note that if an extremal payoff vector v̄ is uniquely achieved by a pure action profile
a, then the assumptions of Proposition A.1 coincide with the original ones of Theorem
6.5 in Fudenberg et al. (1994). One can prove Proposition A.1 by simply replacing the
pure action profile a by the mixed action profile α in the original proof of Fudenberg
et al. (1994, Theorem 6.5).

A.2 Results

Theorem A.1. Let v̄ be an extremal payoff vector of F that is not supported in any
stage-game Nash equilibrium. If each pure action profile a ∈ A with g(a) = v̄ induces
a full support distribution, that is, supp π( · | a) = Y for each a ∈ A with g(a) = v̄,

14



then
d(v̄,E(δ)) = Ω

(
(1 − δ)1/2

)
as δ → 1.8

Theorem A.1 gives a tight lower bound on rate of convergence. For example, in my
favor-exchange game, the distance between E(δ) and (W,W) vanishes at rate exactly
(1 − δ)1/2. Moreover, in “most” situations, the distance between the equilibrium payoff
set and an extremal payoff vector vanishes at rate exactly (1 − δ)1/2. In fact, Hörner
and Takahashi (2016) show in their Proposition 8 that the distance vanishes at rate at
most (1 − δ)1/2 if (i) the targetted payoff vector is strictly individually rational, (ii) the
monitoring structure satisfies a certain condition sufficient for the folk theorem, and
(iii) the payoff function satisfies a mild genericity condition.

The full support condition in Theorem A.1 is indispensable. Consider a game
under perfect monitoring, in which each strictly individually rational payoff vector is
exactly achieved in equilibria (i.e., the rate of convergence is 0). Another example is
a game with the all-or-nothing monitoring structure, where players randomly observe
the chosen action profile or nothing. The rate of convergence is also 0 under this
monitoring structure. This follows from Lemma 7 of Hörner and Takahashi (2016),
which shows that the rate of convergence for the equilibrium payoff sets is the same
under the all-or-nothing monitoring structure as under perfect monitoring.

The assumptions in Theorem A.1 are stronger than those in Proposition A.1. Note
that if an extremal payoff vector v̄ satisfies the full support condition in Theorem A.1,
then condition (ii) in Proposition A.1 holds for each i, a′i ∈ Ai, and each α ∈ ×i∆(Ai)
with g(α) = v̄. Hence if, in addition, v̄ is not supported in any stage-game Nash
equilibrium, then it satisfies the assumptions in Proposition A.1. It is an open question
whether d(v̄,E(δ)) = Ω((1 − δ)1/2), the conclusion of Theorem A.1, still holds under
the assumptions in Proposition A.1. (A game with the all-or-nothing monitoring
structure above does not satisfy the assumptions in Proposition A.1.)

Theorem A.1 can be rephrased as follows:

Corollary A.1. Let v̄ be an extremal payoff vector of F. If supp π( · | a) = Y for each
a ∈ A with g(a) = v̄, then the following statements are equivalent:

(i) v̄ is not supported in any stage-game Nash equilibrium.

(ii) v̄ is not supported in any perfect public equilibrium for any discount factor δ < 1,
that is, v̄ < E(δ) for each δ < 1.

8For each v = (v1, . . . , vn) ∈ RN , let ∥v∥ B
√∑

i v
2
i . For each v ∈ RN and each S ⊂ RN with

S , ∅, let d(v,S) := infv′∈S ∥v − v ′∥.
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(iii) d(v̄,E(δ)) = Ω
(
(1 − δ)1/2

)
as δ → 1.

I apply Theorem A.1 to the favor-exchange game in the form of Corollary A.2
below. Note the difference between E f(δ) and E(δ) in definition; the former is the
set of perfect public equilibrium payoffs for which players are allowed to deviate to
a strategy as a mapping from

⋃
t≥1(Ai × Zi × Y )t−1 to ∆(Ai), while the latter is the

set of perfect public equilibrium payoffs for which players are allowed to deviate to a
strategy as a mapping from

⋃
t≥1(Ai × Y )t−1 to ∆(Ai). Nevertheless, E f(δ) = E(δ) for

each δ < 1. By definition, E f(δ) ⊂ E(δ). The opposite inclusion E f(δ) ⊃ E(δ) also
holds, since no player can be better off by utilizing private information given that his
opponents follow public strategies.

Corollary A.2. Consider the favor-exchange game described in Section 2.1. Let
v̄ B (W,W). We have

d
(
v̄,E f(δ)

)
= Ω

(
(1 − δ)1/2

)
as δ → 1. (3)

Proof. The extremal payoff vector v̄ = g(1,1) is not supported in any stage-game Nash
equilibrium, since each player i has a dominant strategy ai = 0 in the stage game.
Moreover, the corresponding pure action profile (a1,a2) = (1,1) induces a full support
distribution; π( · | 1,1) = {0,1,2} = Y . Thus Theorem A.1 applies, that is,

d
(
v̄,E(δ)

)
= Ω

(
(1 − δ)1/2

)
as δ → 1 (4)

Since E(δ) = E f(δ) for each δ < 1, we obtain (3) from (4). □

A.3 Proof of Theorem A.1

I prove Theorem A.1 by modifying the technique used in Proposition 4 of Hörner
and Takahashi (2016). Note that while their proof idea is applicable in more general
settings, their proof is simplified due to the following special features of the game
that they consider: (i) the full support condition on the monitoring structure, (ii)
the existence of a stage-game dominant strategy. (See footnotes 14 and 15.) To
prove Theorem A.1 without relying on these features (in particular (ii)), I prepare the
following technical lemma:

Lemma A.1. Let B be an arbitrary nonempty subset of A. For any ξ̄ > 0, there exists
χ > 0 such that for all α ∈ ×i∆(Ai) with

∑
a∈B α(a) > 1 − χ, there exist ξ ∈ [0, ξ̄),

ᾱ ∈ ×i∆(Ai), and α ∈ ∆(A) such that
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• α = (1 − ξ)ᾱ + ξα; and

• supp ᾱ ⊂ B.

In words, Lemma A.1 asserts that a mixed action profile which is highly concen-
trated on a subset B can be approximated by a mixed action profile the support of
which is contained in B.

Proof of Lemma A.1. Let A =
{

A′
1 × · · · × A′

N

�� A′
i ⊂ Ai for all i = 1, . . . ,N

}
. Fix

any nonempty set B ⊂ A.
First, I show that for any ξ̄ > 0, there exists χ > 0 such that for all α ∈ ×i∆(Ai)with∑

a∈B α(a) > 1− χ, there exists a set A′ ⊂ B such that A′ ∈ A and
∑

a∈A′ α(a) > 1− ξ̄.
Suppose for a contradiction that there exists ξ̄ > 0 such that for any χ > 0 there exists
α ∈ ×i∆(Ai) such that

∑
a∈B α(a) > 1 − χ and

∑
a∈A′ α(a) ≤ 1 − ξ̄ for all A′ ⊂ B with

A′ ∈ A. For each m ∈ N, let αm ∈ ×i∆(Ai) be such that
∑

a∈B α
m(a) > 1 − 1/m and∑

a∈A′ αm(a) ≤ 1− ξ̄ for all A′ ⊂ B with A′ ∈ A. Since ×i∆(Ai) is a compact set, there
exist a subsequence {αm(k)} of {αm} and ᾱ ∈ ×i∆(Ai) such that αm(k) → ᾱ as k → ∞.
By construction, we have

∑
a∈B ᾱ(a) = 1 and

∑
a∈A′ ᾱ(a) ≤ 1 − ξ̄ for all A′ ⊂ B with

A′ ∈ A. Let A′ = supp ᾱ. By definition,
∑

a∈A′ ᾱ(a) = 1. Since ᾱ ∈ ×i∆(Ai), we must
have A′ = supp ᾱ ∈ A. Moreover, we have A′ ⊂ B, since

∑
a∈B ᾱ(a) = 1. However,

these contradict the fact that
∑

a∈A′ ᾱ(a) ≤ 1 − ξ̄.
Now, take any ξ̄ ∈ (0,1). As I have proved above, we can find χ > 0 such that for

all α ∈ ×i∆(Ai) with
∑

a∈B α(a) > 1 − χ, there exists a set A′ ⊂ B such that A′ ∈ A
and

∑
a∈A′ α(a) > 1− ξ̄. Take any α ∈ ×i∆(Ai) with

∑
a∈B α(a) > 1− χ, and let A′ ⊂ B

be such that A′ ∈ A and
∑

a∈A′ α(a) > 1 − ξ̄. Let ξ =
∑

a<A′ α(a) (< ξ̄). For each i,
define ᾱi : Ai → R by

ᾱ(ai) =
αi(ai)1{ai ∈ A′

i}∑
a′
i∈A′

i
αi(a′i)

for each ai ∈ Ai, and let ᾱ = (ᾱ1, . . . , ᾱn).9 Note that ᾱi ∈ ∆(Ai) for each i, and

ᾱ(a) = α(a)1{a ∈ A′}∑
a′∈A′ α(a′)

for all a ∈ A. Further, define α : A → R by

α(a) = α(a)1{a < A′}∑
a′<A′ α(a′)

for each a ∈ A.10 We obtain α ∈ ∆(A), and α = (1 − ξ)ᾱ + ξα.
9
1{ · } denotes the indicator that switches on if and only if the input statement is true.

10If
∑

a′<A′ α(a) = 0, then let α be an arbitrary probability distribution over A.
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□

Now, we will prove Theorem A.1. The proof contains several lemmas. To clarify
the argument, I will relegate the proofs of the lemmas to the next subsection A.4.

Proof of Theorem A.1. Fix an extremal payoff vector v̄ ∈ F that is not supported in any
stage-game Nash equilibrium, and suppose that supp π( · | a) = Y for all a ∈ g−1(v̄).11

Let L B maxa,a′∈A∥g(a)−g(a′)∥ and η B mina∈g−1(v̄) miny∈Y π(y | a). Note that η > 0,
since π(y | a) > 0 for all y ∈ Y and a ∈ g−1(a). Let ν > 0 be so that for anyα ∈ ×i∆(Ai)
with g(α) = v̄ there exist a player i and a′i ∈ Ai such that gi(a′i, α−i) − gi(α) > ν.12

By Gordan’s theorem, we can find a unit vector λ0 ∈ RN such that λ0 · v′ < λ0 · v̄ for
all v′ ∈ F \{v̄}. Fix θ ∈ (0,1) sufficiently close to 1.13 For each q > 0, denote by Bq the
closed ball with center v̄ − qλ0 and radius r = θq, and by Sq its sphere/boundary. Note
that for θ sufficiently close to 1, sphere Sq crosses each ray {v̄ + t(g(a) − v̄) | t ≥ 0},
where a < g−1(a).

Let Fq be the subset of F that excludes the neighborhood of v̄ separated by the
sphere Sq. For each δ < 1, we can find the largest q such that E(δ) ⊂ Fq, since E(δ) is
a compact set and v̄ < E(δ) (Proposition A.1). Let q(δ) = q, and r(δ) = θq(δ). Since
the distance between E(δ) and v̄ is at least (1 − θ)q(δ), it suffices to show that q(δ) is
of order at least (1 − δ)1/2.

Now, fix any δ < 1 sufficiently close to 1. By the compactness of E(δ) and the
maximality of q(δ), we can find an equilibrium payoff vector v ∈ E(δ) at which E(δ)
touches the sphere Sq(δ) (Fig. 2). Let λ denote the unit vector normal to the sphere
Sq(δ) at point v;

λ =
v − v̄ + q(δ)λ0

θq(δ) .

The following lemmas are graphically evident.

Lemma A.2. For each v′ ∈ Fq(δ), we have

λ · v′ ≤ λ · v.

Lemma A.3. For each v′ ∈ F, we have

λ · v′ ≤ λ · v̄ .
11For each v ∈ RN , let g−1(v) B {a ∈ A | g(a) = v}.
12Existence of such ν follows from the assumption that v̄ is not supported by any stage-game Nash

equilibrium, and the Extreme Value Theorem.
13The formal definition of θ is provided in Section A.4 to prove technical lemmas.
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λ0v̄

Sq(δ)

Fq(δ)
v

v̄

λ

Fig. 2: The shaded area depicts Fq(δ), and the arc depicts a part of the sphere Sq(δ).
The node on the arc represents an equilibrium payoff vector v ∈ E(δ) satisfying at
which the equilibrium payoff set E(δ) touches Sq(δ). The unit vector λ is normal to
Sq(δ).

Fix any perfect public equilibrium associated with payoff profile v. Let α ∈
×i∆(Ai) be the mixed action profile played in the initial period, and w(y) be the
continuation payoff vector after each public signal y ∈ Y . First, we will show that
maxy,y′∈Y ∥w(y)−w(y′)∥ is of order at least 1−δ. This is verified by the following simple
argument if the mixed action profile α satisfies g(α) = v̄. To this end, suppose that
g(α) = v̄. We can find a player i and an action a′i ∈ Ai such that gi(a′i, α−i) − gi(α) > ν.
Since the equilibrium strategy of player i prescribes αi, we must have

(1 − δ)gi(α) + δ
∑
y∈Y

π(y | α)w(y) ≥ (1 − δ)gi(a′i, α−i) + δ
∑
y∈Y

π(y | a′i, α−i)w(y).

Since gi(a′i, α−i) − gi(α) > ν, there exist y, y′ ∈ Y such that wi(y) −wi(y′) ≥ ν(1− δ)/δ,
which implies that maxy,y′∈Y ∥w(y) − w(y′)∥ is of order at least 1 − δ.

Now, we will remove the restriction that g(α) = v̄, by approximating α by some
mixed action profile ᾱ with g(ᾱ) = v̄.

Lemma A.4. For any ξ̄ > 0, there exists χ > 0 such that if q(δ) < χ then there exist
ξ ∈ [0, ξ̄), ᾱ ∈ ×i∆(Ai), and α ∈ ∆(A) such that α = (1 − ξ)ᾱ + ξα and g(ᾱ) = v̄,
where χ depends on ξ̄ and the stage-game structure, but not on δ or the choice of v
and α.
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For ξ̄ = ν/2(ν + L), let χ > 0 be as stated in the above lemma. We can assume
q(δ) < χ, and then let ξ̄, ᾱ ∈ ∆, and α ∈ ∆(A) be such that α = (1 − ξ)ᾱ + ξα and
g(ᾱ) = v̄. Since ᾱ ∈ ×i∆(Ai) satisfies g(ᾱ) = v̄, we can find i and a′i ∈ Ai such that
gi(a′i, ᾱ−i) − gi(ᾱ) > ν. By optimality of αi, we must have

(1 − δ)gi(a′i, α−i) + δ
∑
y∈Y

π(y | a′i, α−i)wi(y) ≤ (1 − δ)gi(α) + δ
∑
y∈Y

π(y | α)wi(y),

or equivalently

1 − δ
δ

(
gi(a′i, α−i) − gi(α)

)
≤

∑
y∈Y

π(y | α)wi(y) −
∑
y∈Y

π(y | a′i, α−i)wi(y). (5)

Note that

gi(a′i, α−i) − gi(α) =
∑
a∈A

α(a)(gi(a′i,a−i) − gi(a))

= (1 − ξ)
∑
a∈A

ᾱ(gi(a′i,a−i) − gi(a)) + ξ
∑
a∈A

α(a)(gi(a′i,a−i) − gi(a))

≥ (1 − ξ)(gi(a′i, ᾱ−i) − gi(ᾱ)) − ξL

≥ (1 − ξ)ν − ξL

>
ν

2
.

Therefore, there exist y, y′ ∈ Y such that

wi(y) − wi(y′) ≥ ν(1 − δ)/2δ, (6)

and hence maxy,y′∈Y ∥w(y) − w(y′)∥ is of order at least 1 − δ.14

Second, we will show that maxy,y′∈Y ∥w(y)−w(y′)∥ is of order at most q(δ)(1 − δ)1/2
by proving that (i) each continuation payoff vector w(y) is distant from v in the direction
of λ with order at most q(δ)(1 − δ) and (ii) all the continuation payoffs w(y) lie in the
closed ball Bq(δ) (Lemma A.5). To prove (i), take any y ∈ Y . Since λ · g(α) ≤ λ · v̄
(Lemma A.2) and λ · w(y′) ≤ λ · v for all y′ ∈ Y (Lemma A.3), we have

λ · v = (1 − δ)λ · g(α) + δ
∑
y′∈Y

π(y′ | α)λ · w(y′)

14In the prisoner’s dilemma analyzed by Hörner and Takahashi (2016), such an elaborate approxi-
mation is not necessary. We can find a positive constant ν′ > 0 such that g1(D, α2) − g1(C, α2) > ν′ for
any mixed action α2 of player 2, where C and D are defined as usual. What remains is to show that α1
puts a positive probability on C, which can be shown in a much easier way.
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≤ (1 − δ)λ · v̄ + δ((1 − π(y | α))λ · v + π(y | α)λ · w(y)).

Note that the probability with which each public signal realizes in the mixed action
profile α is uniformly bounded away from zero;15

π(y | α) = (1 − ξ)π(y | ᾱ) + ξπ(y | α)
≥ (1 − ξ)η
≥ η/2.

(7)

Therefore, we have
λ · (w(y) − v) ≥ −ε(δ), (8)

where
ε(δ) B 2

δη
(1 − δ)λ · (v − v̄).

Since λ · (v − v̄) is of order q(δ) and λ · (w(y) − v) ≤ 0 (Lemma A.2), we have shown
(i) that the continuation payoff w(y) is distant from v in the direction of λ at most ε(δ),
which is of order q(δ)(1 − δ).

Lemma A.5. For δ < 1 sufficiently close to 1, each continuation payoff vector w(y) is
inside the closed ball Bq(δ). That is,

∥w(y) − v̄ + q(δ)λ0∥ ≤ r(δ)

for all y ∈ Y .

Since each w(y) is distant from v in the direction of λ at most ε(δ) and lies in the
closed ball Bq(δ), the continuation payoff vectors w(·) can vary by at most 2(r(δ)2 −
(r(δ) − ε(δ))2)1/2, which is of order q(δ)(1 − δ)1/2. That is, maxy,y′∈Y ∥w(y) − w(y′)∥
is of order at most q(δ)(1 − δ)1/2.

The above arguments have shown that maxy,y′∈Y ∥w(y) − w(y′)∥ is of order at least
(1 − δ) and simultaneously of order at most q(δ)(1 − δ)1/2. Therefore, q(δ) must be of
order at least (1 − δ)1/2. □

The following two parts are keys for the proof of Theorem A.1 (as well as that of
Hörner and Takahashi (2016, Proposition 4)):

(i) maxy,y′∈Y ∥w(y) − w(y′)∥ is of order at least 1 − δ (inequality (6)).
15This is evident if the monitoring structure satisfies the full support condition, which is assumed in

Hörner and Takahashi (2016, Proposition 4).
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(ii) maxy∈Y |λ · (w(y) − v)| is of order at most q(δ)(1 − δ) (inequality (8)).

Part (i) holds, since the difference between continuation payoffs
∑

y∈Y π(y | α)wi(y)
and

∑
y∈Y π(y | a′i, α−i)wi(y) must be of order at least 1 − δ, which is the order of the

flow gain from deviation from αi to a′i (inequality (5)). Part (ii) follows from Lemmas
A.2, A.3, and the full support assumption. In the proof of part (ii), I use the full
support assumption to show the probabilities π(y | α) are uniformly bounded away
from 0 (inequality (7)). Part (ii) then implies that maxy,y′∈Y ∥w(y) − w(y′)∥ is of order
at most q(δ)(1 − δ)1/2, since all continuation payoffs lie in the ball Bq(δ) with radius
r = θq(δ).

A.4 Proofs of Lemmas

Let v̄ ∈ F, L > 0, η > 0, ν > 0, and λ0 ∈ RN be as defined in the proof of Thorem
A.1 in Section A.3. Choose κ > 0 such that λ0 · (g(a) − v̄) < −κ for any a < g−1(v̄),
and θ ∈ (0,1) so that 1 − θ2 < (κ/2L)3.

Claim A.1. For each v′ ∈ F, we have

λ0 · (v′ − v̄) ≤ − κ
L
∥v′ − v̄∥. (9)

Proof. Take any v′ ∈ F \ {v̄}. Let β ∈ ∆(A) be such that v′ =
∑

a∈A β(a)g(a). Note
that

λ0 · (v′ − v̄) =
∑

a<g−1(v̄)
β(a)λ0 · (g(a) − v̄)

≤ −κ
∑

a<g−1(v̄)
β(a).

On the other hand,

∥v′ − v̄∥ ≤
∑

a<g−1(v̄)
β(a)∥g(a) − v̄∥

≤ L
∑

a<g−1(v̄)
β(a).

Combining the above two inequalities, we obtain (9). □

To prove the lemmas, I define two functions q, q̄ : F \ {v̄} → R++ by

q(v′) = −λ0 · (v′ − v̄) −
√
(λ0 · (v′ − v̄))2 − (1 − θ)2∥v′ − v̄∥2

1 − θ2 ,
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q̄(v′) = −λ0 · (v′ − v̄) +
√
(λ0 · (v′ − v̄))2 − (1 − θ)2∥v′ − v̄∥2

1 − θ2

for each v′ ∈ F \ {v̄}. Note that 0 < q(v′) < q̄(v′) for any v′ ∈ F \ {v̄}, since
(λ0 · (v′ − v̄))2 − (1 − θ)2∥v′ − v̄∥2 > 0 by the assumption that 1 − θ2 < (κ/2L)3 and
Claim A.1. I define q and q̄ so that v′ ∈ Bq if and only if q(v′) ≤ q ≤ q̄(v′) for any
v′ ∈ F \ {v̄} and q > 0. See Fig. 3 for the graphical meanings of q and q̄. We will use
the following properties of q and q̄.

Claim A.2. For each v′ ∈ F \ {v̄}, q(v′) and q̄(v′) satisfy the following:

(i) 0 < q(v′) < q̄(v′).

(ii) For each q >, v′ ∈ Bq if and only if q(v′) ≤ q ≤ q̄(v′).

(iii) ∥v′ − v̄∥ ≥ (κ/L)q(v′).

(iv) ((1 − θ2)/2)q̄(v′) ≤ ∥v − v̄∥ ≤ (L(1 − θ2)/κ)q̄(v′).

In particular, (ii) implies v′ ∈ Sq̄(v ′), that is,

∥v′ − v̄ + q̄(v′)∥ = θq̄(v′).

Proof. Fix any v′ ∈ F \ {v̄}. Note that for each q > 0, v′ ∈ Bq if and only if

∥v′ − v̄ + q̄(v′)∥ ≤ θq̄(v′)

or
(1 − θ2)q2 + 2qλ0 · (v′ − v̄) + ∥v′ − v̄∥2 ≤ 0. (10)

Since λ0 · (v′ − v̄) ≤ −(κ/L)∥v′ − v̄∥ (Claim A.1) and 1 − θ2 < 3(κ/2L)2, we have

(λ0 · (v′ − v̄))2 − (1 − θ2)∥v′ − v̄∥2 ≥
( κ
2L

)2
∥v′ − v̄∥2 > 0. (11)

Hence, 0 < q(v′) < q̄(v′), and (10) is equivalent to q ∈ [q(v′), q̄(v′)]. We have
proved (i) and (ii). One can show (iii) and (iv) by substituting inequality (11) into the
expressions for q(v′) and q̄(v′). □

By using q̄, we can characterize Fq, q(δ), and v in the following way.

• Fq = {v′ ∈ F \ {v̄} | q̄(v) ≥ q} for each q > 0,

• q(δ) = minv ′∈E(δ) q̄(v′) for each δ < 1, and
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λ0v̄

v′

Sq

Sq̄

(a) For a payoff vector v ′ ∈ F \ {v̄}, let q B q(v ′), and q̄ B q̄(v ′). The sphere Sq
crosses the ray {v̄ + t(v ′ − v̄ | t ≥ 0} at two points with v ′ as the “right” intersection,
while Sq̄ crosses the ray with v ′ as the “left” intersection.

λ0v̄

v′

Sq

q < q < q̄

(b) If q < q < q̄, then the payoff vector v ′ lies in the interior of the closed ball Bq .
The circle drawn with a thick line depicts the sphere Sq of Bq .

Fig. 3: The graphical meanings of q and q̄.
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• v ∈ E(δ) is any equilibrium payoff vector such that q̄(v) = q(δ).

Proof of Lemma A.2. Take any v′ ∈ Fq(δ). It suffices to show that

(v − v̄ + q(δ)λ0) · v′ ≤ (v − v̄ + q(δ)λ0) · v. (12)

Decompose v′ as

v′ =

(
v̄ +

q(δ)
q̄(v′) (v

′ − v̄)
)
+

(
v′ − v̄ − q(δ)

q̄(v′) (v
′ − v̄)

)
,

where the first term on the right-hand side represents the one closer to v̄ among the
two points at which the sphere Sq(δ) crosses the ray {v̄ + t(v′ − v̄) | t ≥ 0}. For the first
term,

(v − v̄ + q̄(v)λ0) ·
(
v̄ +

q(δ)
q̄(v′) (v

′ − v̄)
)
− (v − v̄ + q(δ)λ0) · v

=(v − v̄ + q̄(v)λ0) ·
(
v̄ +

q(δ)
q̄(v′) (v

′ − v̄) − v̄ + q(δ)λ0

)
− (v − v̄ + q(δ)λ0) · (v − v̄ + q(δ)λ0)

=
q(δ)
q̄(v′) (v − v̄ + q(δ)λ0) · (v′ − v̄ + q̄(v′)λ0) − ∥v − v̄ + q(δ)λ0∥2

≤ q(δ)
q̄(v′) ∥v − v̄ + q(δ)λ0∥ · ∥v′ − v̄ + q̄(v′)λ0∥ − ∥v − v̄ + q(δ)λ0∥2

=
q(δ)
q̄(v′) (θq(δ)) · (θq(v′)) − (θq(δ))2

=0.

For the second term,

(v − v̄ + q(δ)λ0) ·
(
v′ − v̄ − q(δ)

q̄(v′) (v
′ − v̄)

)
=

(
1 − q(δ)

q̄(v′)

)
(v − v̄ + q(δ)λ0) · (v′ − v̄)

=

(
1 − q(δ)

q̄(v′)

)
((v − v̄) · (v′ − v̄) + q(δ)λ0 · (v′ − v̄))

≤
(
1 − q(δ)

q̄(v′)

) (
∥v − v̄∥ · ∥v′ − v̄∥ − κ

L
q(δ)∥v′ − v̄∥

)
≤

(
1 − q(δ)

q̄(v′)

)
∥v′ − v̄∥

(
L
κ
(1 − θ2)q(δ) − κ

L
q(δ)

)
≤

(
1 − q(δ)

q̄(v′)

)
∥v′ − v̄∥q(δ)L

κ

(
1 − θ2 −

( κ
L

)2
)
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≤0,

where we have used Claim A.1, property (iv) in Claim A.2, and the fact that q̄(v′) ≥ q(δ)
and 1 − θ2 < (κ/L)2. Therefore, we obtain (12). □

Proof of Lemma A.4. Take any ξ̄ > 0. By Lemma A.1, there exists χ0 > 0 such that
for any α ∈ ×i∆(Ai) with

∑
a∈g−1(v̄) α(a) > 1 − χ0, there exist ξ ∈ [0, ξ̄), ᾱ ∈ ×i∆(Ai),

and α ∈ ∆(A) such that α = (1 − ξ)ᾱ + ξα and supp ᾱ ⊂ g−1(v̄). Let χ B κ2 χ0
L(1−θ2) .

Suppose that q(δ) < χ. By Lemma A.2,

λ · v = (1 − δ)λ · g(α) + δ
∑
y∈Y

π(y | α)λ · w(y)

≤ (1 − δ)λ · g(α) + δλ · v.

We thus have

λ · (g(α) − v̄) ≥ λ · (v − v̄)
≥ −∥v − v̄∥

≥ −L
κ
(1 − θ2)q(δ),

where the inequality in the last line follows from property (iv) in Claim A.2. On the
other hand,

λ · (g(α) − v̄) =
∑

a∈g−1(v̄)
λ · (g(α) − v̄)

≤ −κ
∑

a<g−1(v̄)
α(a).

Hence, we have ∑
a<g−1(v̄)

α(a) ≤ L
κ2 (1 − θ2)q(δ) < χ0.

Therefore, there exist ξ ∈ [0, ξ̄), ᾱ ∈ ×i∆(Ai), and α ∈ ∆(A) such that α = (1−ξ)ᾱ+ξα
and g(ᾱ) = v̄.

□

Claim A.3.
∥λ − λ0∥ ≤ 4L

κ
(1 − θ2).
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Proof. Note that

λ − λ0 =
v − v̄ + q(δ)λ0

θq(δ) − λ0

=
1

θq(δ) (v − v̄) +
1 − θ
θ

λ0.

Hence, we have

∥λ − λ0∥ ≤ 1
θq(δ) ∥v − v̄∥ +

1 − θ
θ

≤ L
κ
· 1 − θ2

θ
+

1 − θ
θ

≤ 2L
κ

· 1 − θ2

θ

≤ 4L
κ
(1 − θ2),

where we have used property (iv) in Claim A.2 and the fact that θ > 1/2. □

We will prove the following claim that is stronger than Lemma A.3.

Claim A.4. For each v′ ∈ F, we have

λ · (v′ − v̄) ≤ − κ

2L
∥v′ − v̄∥,

in particular
λ · v′ ≤ λ · v̄ .

Proof. Take any v′ ∈ F.

λ · (v′ − v̄) = λ0 · (v′ − v̄) + (λ − λ0) · (v′ − v̄)

≤ − κ
L
∥v′ − v̄∥ + ∥λ − λ0∥ · ∥v′ − v̄∥

≤ − κ
L
∥v′ − v̄∥ + 4L

κ
(1 − θ2)∥v′ − v̄∥

=
4L
κ
∥v′ − v̄∥

(
(1 − θ2) −

( κ
2L

)2
)

≤ − κ

2L
∥v′ − v̄∥,

where we have used Claims A.1, A.3, and the fact that 1 − θ2 < (1/2)(κ/2L)2. □

Proof of Lemma A.3. Lemma A.3 is an immediate corollary of Claim A.3. □
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Claim A.5. For any v′ ∈ F \ {v̄} with ∥v′ − v̄∥ ≤ (κ/L)q, we have q ≥ q(v′).

Proof. Immediate by property (iii) in Claim A.2. □

Proof of Lemma A.5. Take any y ∈ Y . By property (ii) in Claim A.2, it suffices to show
that q(δ) ∈ [q(w(y)), q̄(w(y))]. Since w(y) ∈ E(δ) ⊂ Fq(δ), we have q̄(w(y)) ≥ q(δ).
Note that property (iii) in Claim A.2 implies that for any q > 0 and v′ ∈ F \ {v̄} with
∥v′− v̄∥ ≤ (κ/L)q, we have q ≥ q(v′). We will thus show that ∥w(y)− v̄∥ ≤ (κ/L)q(δ).
By Claim A.4,

λ · (w(y) − v̄) ≤ − κ

2L
∥w(y) − v̄∥.

On the other hand,

λ · (w(y) − v̄) = λ · (w(y) − v) + λ · (v − v̄)

≥ − 2
δη

(1 − δ)λ · (v − v̄) + λ·(v − v̄)

≥
(
1 − 2

δη
(1 − δ)

)
λ · (v − v̄)

=
1
2
λ · (v − v̄)

> −L(1 − θ2)
2κ

q(δ),

where we have used inequality (8), property (iv) in Claim A.2, and the fact that δ is
sufficiently close to 1 so that 2(1 − δ)/δη < 1/2. Hence,

∥w(y) − v̄∥ ≤
(
2L
κ

)2
(1 − θ2)q(δ).

Therefore,

∥w(y) − v̄∥ − κ

L
q(δ) ≤

((
2L
κ

)2
(1 − θ2) − κ

L

)
q(δ)

=

(
2L
κ

)2 (
(1 − θ)2 − 2

( κ
2L

)3
)

q(δ)

≤ 0,

where the last inequality follows from the fact that 1 − θ2 < (κ/2L)3. □
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B Proof of Proposition 1

In this section, I will prove Proposition 1 relying on Theorem A.1 (or Corollary A.2).
First, I will prove the following preliminary lemma.

Lemma B.1. Let v̄ B (W,W). For each feasible payoff vector v = (v1, v2) ∈ F,

W − v1 + v2
2

≥ γ − 1
4(γ + 1) ∥v − v̄∥.

Proof. Let 1 = (1,1). For each a < g−1(v̄),

1 · (g(a) − v̄) ≤ −p(γ − 1),

and
∥g(a) − v̄)∥ ≤ 2p(γ + 1).

Take any v ∈ F \ {v̄}. Let β ∈ ∆(A) be such that v =
∑

a∈A β(a)g(a). Note that

1 · (v − v̄) =
∑

a<g−1(v̄)
β(a)1 · (g(a) − v̄)

≤ −p(γ − 1)
∑

a<g−1(v̄)
β(a),

and

∥v − v̄∥ ≤
∑

a<g−1(v̄)
β(a)∥g(a) − v̄∥

≤ 2p(γ + 1)
∑

a<g−1(v̄)
β(a).

Thus, we have
1 · (v − v̄) ≤ − γ − 1

2(γ + 1) ∥v − v̄∥.

Rearranging the formula, we obtain

W − v1 + v2
2

≥ γ − 1
4(γ + 1) ∥v − v̄∥.

□

Proof of Proposition 1. Let v̄ = (W,W). By Corollary A.2,

d
(
v̄,E f(δ)

)
= Ω

(
(1 − δ)1/2

)
.
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By Lemma B.1,

W − W∗(δ) = inf
(v1,v2)∈E f(δ)

(
W − v1 + v2

2

)
≥ γ − 1

4(γ + 1) inf
v∈E f(δ)

∥v − v̄∥

=
γ − 1

4(γ + 1)d
(
v̄,E f(δ)

)
.

Therefore,
W − W∗(δ) = Ω

(
(1 − δ)1/2

)
as δ → 1.

□

C Proof of Proposition 2

C.1 Derivation of the Value Function

Fix δ < 1 and n ∈ N. Hereafter I will suppress the dependence of variables on the
discount factor δ and the number n of chips when there is no confusion. The value
function satisfies the following system of equations:

Vk =
pδV1 + (1 − p)δV0 if k = 0

p ((1 − δ) + δV2n) + p ((1 − δ)γ + δV2n−1) + (1 − 2p)δV2n if k = 2n

pδVk+1 + p ((1 − δ)γ + δVk−1) + (1 − 2p)δVk otherwise.

(13)

Let
ζ = ζ(δ) B 1 − δ

pδ
,

and

∆k = ∆
n
k(δ) B

δ
(
Vn

k+1(δ) − Vn
k (δ)

)
1 − δ

for each k ∈ {0, . . . ,2n − 1}. Rearranging the equations (13), we obtain

Vk =


p∆0 if k = 0

pγ − p(∆2n−1 − 1) if k = 2n

pγ − p(∆k−1 − ∆k) otherwise,

(14)
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and

(2 + ζ)∆0 − ∆1 = γ, (15)

−∆2n−2 + (2 + ζ)∆2n−1 = 1, (16)

−∆k−1 + (2 + ζ)∆k − ∆k+1 = 0 (k ∈ {1, . . . ,2n − 2}). (17)

Since equations (17) are second-order difference equations, we can write

∆k = c1α
k + c2β

k (k ∈ {0, . . . ,2n − 1}) (18)

for some c1, c2 ∈ R, where

α =
2 + ζ −

√
(2 + ζ)2 − 4
2

,

β =
2 + ζ +

√
(2 + ζ)2 − 4
2

.

Note that 0 < α < 1 < β. By using equations (15), (16), and (18), we can get c1 and
c2

©­­«
c1

c2

ª®®¬ =
©­­«
β α

α2n β2n

ª®®¬
−1 ©­­«

γ

1

ª®®¬
=

1
β2n+1 − α2n+1

©­­«
β2nγ − α

−(α2nγ − β)

ª®®¬ .
Therefore,

∆k =
(β2nγ − α)αk − (α2nγ − β)βk

β2n+1 − α2n+1

=
γ(αk β2n − α2nβk) + (βk+1 − αk+1)

β2n+1 − α2n+1 (19)

for k ∈ {0, . . . ,2n − 1}. Note that ∆k > 0 for all k ∈ {0, . . . ,2n − 1}, which implies
that Vk is strictly increasing in k. The value Vk of holding k chips is obtained by
substituting (19) into (14). In particular,

Wn
c (δ) = Vn

n (δ) = W − p(γ − 1)α
n(1 − α)

1 − α2n+1 , (20)
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where I use the fact that β = 1/α. Moreover, for each δ ∈ (0,1),

W∗
c (δ) = Wn∗(δ)

c (δ) (21)

since Wn
c (δ) is (strictly) increasing in n. It follows from (20) and (21) that

W − W∗
c (δ) = p(γ − 1)α

n∗(δ)(1 − α)
1 − α2n∗(δ)+1 . (22)

C.2 Convergence Rate of W −W ∗
c (δ)

Recall that the n-chip strategies constitute an equilibrium if and only if

δVk+1 ≥ (1 − δ) + δVk (23)

for all k ∈ {0, . . . ,2n − 1}. Incentive condition (23) can be expressed by ∆k’s;

∆k ≥ 1 (k ∈ {0, . . . ,2n − 1}) . (24)

Abdulkadiroglu and Bagwell (2012) show that the only binding incentive condition is
the one for the player with 2n − 1 chips. That is, the n-chip strategies constitute an
equilibrium if and only if ∆2n−1 ≥ 1. I will state its proof in Lemmas C.1 and C.2 for
self-containedness.16 Lemma C.1 and C.2 below correspond to their Lemma 4 and 6
in Abdulkadiroglu and Bagwell (2012), respectively.

Lemma C.1. For any n ∈ N and δ < 1, if ∆n
2n−1(δ) ≥ 1 then Vn

k (δ) ≤ pγ for all
k ∈ {0, . . . ,2n}.

Proof. Fix any n ∈ N and δ < 1. Suppose that ∆2n−1 ≥ 1. By equation (14) for
k = 2n, we have

pγ − V2n = p(∆2n−1 − 1) ≥ 0,

or equivalently V2n ≤ pγ. Since ∆k > 0 for all k ∈ {0, . . . ,2n − 1}, we obtain Vk ≤ pγ

for all k ∈ {0, . . . ,2n}. □

Lemma C.2. For any n ∈ N and δ < 1, the n-chip strategies constitute an equilibrium
if and only if ∆n

2n−1(δ) ≥ 1.

Proof. Fix any n ∈ N and δ ∈ (0,1). To prove the sufficiency, suppose that ∆2n−1 ≥ 1.
By Lemma C.1, Vk ≤ pγ for all k ∈ {0, . . . ,2n}. Hence equations (14) for k , 0,2n

16The proofs of Lemmas C.1 and C.2 are shorter than those of Abdulkadiroglu and Bagwell (2012),
since I employ the formulas derived in Section C.1.
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imply that ∆k is nonincreasing in k. Thus we have ∆k ≥ ∆2n−1 ≥ 1 for all k ∈
{0, . . . ,2n − 1}. That is, the n-chip strategies constitute an equilibrium. □

Now, I will derive the divergence rate of n∗(δ), the maximum number of chips
which can be supported in chip-strategy equilibria when the discount factor is δ. As
we have seen in Section C.1, ∆n

2n−1(δ) depends on δ only through ζ . Hence, for
simplicity, I will treat ζ instead of δ as an independent variable from now on. For each
n ∈ N, let ζ∗n denote the largest ζ > 0 for which the n-chip strategies constitute an
equilibrium.17,18 To derive the divergence rate of n∗(δ), I consider another problem;
what is the convergence rate of ζ∗n as the number n of chips grows to infinity.

Lemma C.3. ζ∗n vanishes at rate at least 1/n2. That is,

ζ∗n = Ω

(
1
n2

)
. (25)

Proof. Fix n ∈ N and take any ζ > 0. By Lemma C.2, the n-chip strategies constitute
an equilibrium if and only if

∆2n−1 ≥ 1. (26)

Note that condition (26) is equivalent to

−α4n+1 + γα2n(1 + α) − 1 ≥ 0. (27)

Define a function ϕn : [0,1] → R by

ϕn(t) = −(1 − t)4n + γ(1 − t)2n(2 − t) − 1

for each t ∈ [0,1]. Function ϕn is continuous and strictly decreasing. Moreover,
we have ϕn(0) = 2(γ − 1) > 0 and ϕn(1) = −1 < 0. Hence, by the Intermediate
Value Theorem there exists a unique solution to the equation ϕn(t) = 0, t ∈ (0,1). Let
tn ∈ (0,1) denote the solution. The n-chip strategies constitute an equilibrium if and
only if

α ≥ 1 − tn,

or equivalently

ζ ≤ t2
n

1 − tn
.

17ζn∗ is well defined, since ∆n2n−1(δ) is a continuous function of δ, and hence of ζ .
18Recall that ζ(δ) = p(1 − δ)/δ and hence a low ζ associates with a high δ.
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Therefore,

ζn =
t2
n

1 − tn
.

Since ζn ≥ t2
n , it suffices to show that

tn = Ω
(
1
n

)
. (28)

Suppose for a contradiction that

tn , Ω
(
1
n

)
.

We can construct a sequence {nl} of positive integers such that nl → ∞ and nltnl → 0
as l → ∞. Let ν > 0 be so small that −e4ν + 2γe−2ν − 1 > 0. For a sufficiently large
l ∈ N, we have

0 = ϕnl (tnl )
≥ ϕnl (ν/nl)

= −
(
1 − ν

nl

)4nl
+ γ

(
1 − ν

nl

)2nl (
2 − ν

nl

)
− 1,

where the inequality on the second line comes from the fact that nltnl ≤ ν for a
sufficiently large l ∈ N. The last expression converges to −e4ν + 2γe−2ν − 1 > 0 as
l → ∞. This is a contradiction. Hence we must have (28), so (25).

□

Now, we can derive a lower bound on the rate of divergence for n∗(δ) by reversing
the roles of n and ζ (or δ).

Lemma C.4.
n∗(δ) = Ω

(
1

(1 − δ)1/2

)
.

Proof. Since ζn > 0 for all n ∈ N and ζ(δ) → 0 as δ → 1, we have n∗(δ) → ∞ as
δ → 1. Moreover, by Lemma C.3, there exist c > 0 and N ∈ N such that ζn > c/n2 for
all n ≥ N . Let δ < 1 be such that n∗(δ) ≥ N for all δ > δ. Take any δ > δ. We have

ζn∗(δ)+1 >
c

(n∗(δ) + 1)2
.
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Moreover, by the definition of n∗, we must have

ζ(δ) > ζn∗(δ)+1.

Hence we have
ζ(δ) > c

(n∗(δ) + 1)2
.

By rearranging the above inequality, we obtain

n∗(δ)ζ(δ)1/2 > c1/2 − ζ(δ)1/2.

Therefore,
n∗(δ) = Ω

(
ζ−1/2

)
,

or equivalently

n∗(δ) = Ω
(

1
(1 − δ)1/2

)
.

□

We are now in a position to prove Proposition 2.

Proof of Proposition 2. By Lemma C.4, there exist a positive constant c > 0 and δ < 1
such that

n∗(δ) > c(1 − δ)−1/2 (29)

for all δ > δ. Take any δ > δ. For simplicity, let n∗ = n∗(δ). By (22), we have

W − W∗
c (δ) ≤ p(γ − 1) 1 − α

1 − α2n∗+1

≤ p(γ − 1)(1 − α)
(
1 − α2c(1−δ)−1/2+1

)−1
.

One can easily check

lim
δ→1

(1 − δ)−1/2(1 − α(δ)) = 1/√p,

lim
δ→1

α(δ)2c(1−δ)−1/2+1 = e−2c/√p < 1.

Therefore, we obtain
W − W∗

c (δ) = O
(
(1 − δ)1/2

)
.

□
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D Coefficients for n∗(δ) and W −W ∗
c (δ)

I obtain the leading coefficients for n∗(δ) and W − W∗
c (δ) by refining the proof of

Proposition 2.

Proposition D.1.
lim
δ→1

n∗(δ)(1 − δ)1/2 = cp,γ (30)

and
lim
δ→1

(
W − W∗

c (δ)
)
(1 − δ)−1/2 = Cp,γ, (31)

where

cp,γ =

√
p

2
log

(
γ +

√
γ2 − 1

)
,

Cp,γ =

(
p(γ − 1)

2

)1/2
.

I prove Proposition D.1 by refining Lemma C.3.

Lemma D.1.
lim

n
n2ζn = ν

2
γ, (32)

where
νγ =

1
2

log
(
γ +

√
γ2 − 1

)
= cp,γ/

√
p.

Proof. For each n ∈ N, let ϕn and tn be as defined in the proof of Lemma C.3. Since
tn → 0 as n → ∞, it suffices to show that

lim
n

ntn = νγ . (33)

Define a function ψ : R+ → R by

ψ(ν) = −e−4ν + 2γe−2ν − 1

for each ν ∈ R+. Note that for all ν ∈ R+, ψ(ν) > 0 if and only if ν < νγ, and ψ(ν) < 0
if and only if ν > νγ.

I show that lim supn ntn ≤ νγ and lim infn ntn ≥ νγ. I prove only the former, since
the proofs are virtually the same. Suppose for a contradiction that lim supn ntn > νγ.
We can find ν > νγ and a sequence {nl} of positive integers such that nltnl > ν for all
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l ∈ N and nl → ∞ as l → ∞. For every l ∈ N,

0 = ϕnl (tnl )
≤ ϕnl (ν/nl)

= −
(
1 − ν

nl

)4nl
+ γ

(
1 − ν

nl

)2nl (
2 − ν

nl

)
− 1.

The last expression converges to ψ(ν) < 0 as l → ∞. This is a contradiction. Hence,
we must have lim supn ntn ≤ νγ. Similarly, we can prove lim infn ntn ≥ νγ. Therefore,
we obtain (33), and hence (32). □

Proof of Proposition D.1. Take any δ < 1. By the definition of n∗, we have

ζn∗(δ)+1 < ζ ≤ ζn∗(δ),

and hence √
(n∗(δ))2ζn∗(δ)+1 < n∗(δ)ζ1/2 ≤

√
(n∗(δ))2ζn∗(δ).

Letting δ → 1, we obtain limδ→1 n∗(δ)ζ(δ)1/2 = νγ, which implies (30).
Now, I will prove (31). Take any δ < 1, and let n∗ = n∗(δ). By (22), we have

(
W − W∗

c (δ)
)
(1 − δ)−1/2 = p(γ − 1)α

n∗(1 − α)(1 − δ)−1/2

1 − α2n∗+1 .

The equation (31) follows from the following:

lim
δ→1

(1 − α(δ))(1 − δ)−1/2 = 1/√p,

lim
δ→1

α(δ)n∗(δ) = e−νγ .

□
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